
Quantization of Modified
Maxwell’s Electrodynamics

Cian Luke Martin

Under the supervision of
Dr Gabriele Tartaglino Mazzucchelli

A thesis submitted to the University of Queensland
in partial fulfilment of the degree of Bachelor of

Advanced Science with Honours
School of Mathematics and Physics

November 2023



ii

© Cian Luke Martin, 2023.

Typeset in LATEX 2ε.



iii

The work presented in this Thesis is, to the best of my
knowledge and belief original, except as acknowledged in
the text, and has not been submitted either in whole or
in part, for a degree at this or any other university.

Cian Luke Martin





Abstract

The standard model of particle physics is incomplete, with unexplained phenomena
such as dark matter, quantum gravity and matter-antimatter asymmetry remaining
unsolved despite extensive research. The most common searches for undiscovered
physics occur through the addition of hypothetical particles to the standard model.
A less common route in this endeavour is the introduction of fundamental inter-
actions between known particles. The photon does not interact with itself in the
standard model. However, a new nonlinear model called Modified Maxwell’s elec-
trodynamics, or ModMax for short, has been discovered in theoretical literature
that predicts a photon capable of interacting with itself without breaking the
symmetries of Maxwell’s theory.

ModMax has been studied extensively at the semi-classical level with applications
in strongly coupled condensed matter systems, however remains untouched in a
quantum context. As such, it was the central aim of this project to perform the
quantization of this theory. Using the background field method and dimensional
regularization, I obtained novel corrections beyond what the classical theory pre-
dicts. By calculating the effective action, I showed that these corrections vanish in
a constant background field, and are not of the form of the classical theory for a
varying background field.

Motivated by the form of the corrections obtained for ModMax, I applied the
method I developed to quantize ModMax to its two dimensional analogue theory.
This was the secondary aim of the project, and I obtained the effective action by
evaluating all one loop Feynman diagrams, as well as the separate infinite series of
two vertex diagrams. Lastly, I considered an alternative approach to quantization
using auxiliary fields that captured the nonlinearity, and demonstrated that it
is not possible to quantize ModMax in this fashion without breaking Lorentz
symmetry. As few theories of nonlinear electrodynamics have been explored on the
quantum domain, this quantization of ModMax represents a forward step in this
endeavour. While ModMax’s theoretical effects remain on a scale unreachable by
current experimental techniques, I nonetheless characterized ModMax’s predictions
and it’s analogue’s behaviour on the quantum domain.
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1
Review: Introduction

1.1 Preface
While common extensions to the standard model in the search for new physics
often add new theoretical particles, a less common route in this endeavour is the
addition of novel interactions between known particles. An emerging category
of such extensions is models of nonlinear electrodynamics, that is, adding self-
interactions of photons with themselves. Such interactions break the principle of
superposition that arises from the linearity of Maxwell’s equations and thus are
significant only at extreme scales.

These models have been extensively studied at the classical level to solve problems
in cosmology and supergravity as well as in strongly coupled condensed matter
systems where photon self-interactions would contribute significantly [1]. However,
they remain largely unstudied in the quantum domain due to the difficulty the
nonlinearity introduces to quantization procedures.

There are a number of ways to extend electrodynamics while preserving different
properties of interest within classical electromagnetism. The prototypical example
of such an extension is the Born-Infeld theory, proposed in 1934 to solve the infinite
self-energy of an electron [2–5]. Born and Infeld achieved this by introducing a
maximum possible electric field strength in their theory. However this modification
introduces a characteristic energy scale (the maximum field strength) which breaks

1



2 Review: Introduction

the scale invariance present in Maxwell’s electrodynamics. Note that Born-Infeld
theory still preserves a symmetry of Maxwell’s equations called electromagnetic
duality.

It was long thought that there were no possible extensions to Maxwell’s electrody-
namics that would preserve both of the present symmetries: scale invariance and
electromagnetic duality. In recent literature [1, 6, 7] however, a novel modification
to Maxwell’s theory of electromagnetism (electrodynamics) was discovered that
achieves this: Modified Maxwell’s electrodynamics or ModMax for short. It was
further proved that ModMax is the only theory that achieves this, namely, it is
the unique nonlinear extension that preserves all the symmetries of Maxwell’s orig-
inal theory. The beauty inherent in the unique preservation of these symmetries
aside, ModMax is also of particular interest as such symmetries can lead to novel
observable implications when the theory is quantized.

Additionally, as we expect such symmetries to be respected in classical limits, it
is of great interest whether such symmetries are fundamental or broken at the
quantum level. While the domain of effect of such extensions is beyond current
experimental techniques, the presence of nonlinear effects represents a conceptual
shift in how we describe electromagnetism worthy of our study.

1.2 Introduction
In this thesis, we perform the quantization of ModMax and calculate such first
quantum corrections that arise within this theory. We also generalize our argument
to other higher derivative theories in 1 + 1 spacetime dimensions.

The process of quantization, the transfer of a classical theory to the quantum
domain, begins with formulating a Lagrangian, an object which completely specifies
the theory and the equations of motion it predicts. Often this is identical to the
classical Lagrangian, now with the fields being considered quantum fields that do
not commute (i.e. order matters in an expression).

If the Lagrangian describes non-interacting particles, then it is often able to be
solved exactly for the equations of motion. However, among interacting theories,
very few admit an exact solution and thus we must employ the use of perturbation
theory [8, 9]. To achieve this, we consider the interaction to have a small effect
relative to the free evolution of the particles and expand in an increasing number
of interactions. This is well suited to nonlinear theories of electrodynamics where
the additional interaction term is separable, as the strength of the interaction is
necessarily extremely small due to lack of classical observation.
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However, due to the nonlinearity of ModMax and the non-analytic nature of the
square root it contains, perturbation theory alone cannot yield a quantum version
of this theory. In addition, we must expand the nonlinearity itself about some
background. In most nonlinear field theories, the weak field limit reduces to
Maxwell’s equations, which would allow one to truncate higher powers of fields
in such an expansion immediately. However, ModMax only reduces to Maxwell’s
theory in the non-interacting limit, namely when the self-interaction terms vanish,
which is distinct. Instead, we make use of the background field method, where we
expand about a fixed classical background field. This fixed classical background
provides a valid point to expand about, and will reduce correctly in the limit to
Maxwell’s equations.

1.3 Classical Electromagnetism
Beginning with Maxwell’s theory, Maxwell’s Lagrangian is expressible as

L = −1

4
F µνFµν , (1.1)

where the field strength Fµν is defined by

Fµν = ∂µAν − ∂νAµ, (1.2)

for four vector potential Aµ, with µ = 0, 1, 2, 3. We can also write the electric and
magnetic fields explicitly with derivatives of this potential such that for i = 1, 2, 3
we have

Ei = ∂0Ai − ∂iA0 Bi = −εijk∂jAk, (1.3)

where we use Einstein notation in which summation over repeated indices is implied.

Definition 1: The Hodge dual of the field strength tensor Fµν is defined as

F̃ µν =
1

2
εµνρτFρτ , (1.4)

where εµνρτ = −εµντρ is the Levi-Civita tensor that is antisymmetric under all
index exchanges.

Applying the Euler-Lagrange equation,

∂µ
∂L

∂ (∂µAν)
=

∂L
∂Aν

, (1.5)
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leads to the equations of motion

∂µF
µν = 0 ∂µF̃

µν = 0, (1.6)

which can be written in the more familiar form

∂E
∂t

= ∇× B ∂B
∂t

= −∇× E,

∇ · B = 0 ∇ · E = 0, (1.7)

which are the familiar (sourceless) Maxwell’s equations.

1.4 Symmetries of Maxwell’s Equations
Maxwell’s equations has two symmetries of note that are preserved uniquely by
ModMax: electromagnetic duality and conformal invariance.

One can notice that under an SO (2) transformation (i.e. a 2D rotation) parametrised
by an angle α ∈ [0, 2π),(

F ′µν

F̃ ′µν

)
=

(
cosα sinα
− sinα cosα

)(
F µν

F̃ µν

)
, (1.8)

that Maxwell’s equations of motion are invariant. This is a symmetry called
electromagnetic duality (EM-duality) that Maxwell’s theory possesses and is the
reason we consider electric and magnetic fields as part of a larger electromagnetic
theory. This duality is most apparent when performing Lorentz transformations,
where electric and magnetic fields ‘rotate’ into each other in a similar fashion.
Notice that this symmetry holds only on-shell, that is, it occurs when the equations
of motion are applied. ModMax preserves this symmetry at this level as well [1, 7].

Writing the field strength tensor and its dual explicitly we see the element wise
exchange (up to sign) of electric and magnetic fields with

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

, F̃ µν =


0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

. (1.9)

Additionally, Maxwell’s theory has no dependence on a length or energy scale
and thus has a global symmetry of scale invariance. With the addition of special
conformal transformations, this becomes conformal invariance. This is a global
symmetry of the Lagrangian, not just the equations of motion which is important
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as it allows us to apply Noether’s theorem and derive conserved quantities. This
group of symmetries includes all transformations that preserve angles and thus
includes the Poincaré group (which is Lorentz transformations and 3D spatial
rotations), dilations (zooming in/out) and special conformal transformations. The
latter two transform the coordinates according to

xµ → λxµ (1.10)

xµ → xµ − λµx2

1− 2λµxµ + λ2x2
, (1.11)

where λµ parametrizes the transformation.

More generally, in Minkowski space where the metric is given by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, (1.12)

we can write an infinitesimal distance as

d2s = ηµν dxµ dxν . (1.13)

Under a conformal transformation parametrized by Ω (x), this distance transforms
as

d2s′ = eΩ(x) d2s , (1.14)

which preserves the relative angles of vectors (as shown in Fig. 1.1).

Figure 1.1: A special conformal transformation of a grid. Notice that the
right angle intersections of all grid lines is preserved after the transformation.

Note. The special conformal transformation can also be interpreted as a coordinate
inversion composed with a translation and then a second coordinate inversion.
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1.5 General Theories of Nonlinear Electrodynam-
ics

When investigating extensions to Maxwell’s Lagrangian, there are strong restric-
tions on the form of the candidates and their nonlinearity. The theory must be
Lorentz invariant to agree with experimental observations, and thus must be built
out of Lorentz invariant operators. The only two independent Lorentz invariant
combinations of operators that can be made with the field strength are the Maxwell
Lagrangian

S ≡ −1

4
FµνF

µν =
1

2

(
E2 − B2

)
(1.15)

which is a scalar, and

P ≡ −1

4
FµνF̃

µν = E · B, (1.16)

which is a pseudo-scalar (i.e. negates under parity transformations). All higher
order combinations of F µν , such as F µνF ρ

ν Fρµ, are expressible in terms of these two
invariants, and terms including more derivatives, such as ∂µS∂µS lead to systems
associated with unphysical ‘ghost fields’ [1, 10].

Therefore, the most general form of a nonlinear electrodynamics Lagrangian we
focus on is some function of these quantities, L (S, P ). Note that this form contains
no restrictions on the symmetries of the theory and in general can break both the
symmetries of Maxwell’s equations: conformal symmetry and electromagnetic
duality. However, in an effort to narrow the search scope, we can identify that if we
want our nonlinear extension to maintain conformal invariance, it must transform
under a rescaling (by a constant a) of S → a−4S and P → a−4P as

L
(
a−4S, a−4P

)
= a−4L (S, P ) . (1.17)

This factor of a−4 is cancelled by the transformation of d4x→ a4 d4x in the action
integral to leave the theory invariant under this transformation.

Likewise, if we want our nonlinear extension to maintain electromagnetic duality,
it’s equations of motion should be invariant under the generalization of the SO (2)
rotation we saw in Eq. (1.8) for Maxwell’s equations,(

−2∂L(F ′)
∂F ′

µν

F̃ ′
µν

)
=

(
cosα sinα
− sinα cosα

)(−2 ∂L
∂Fµν

F̃µν

)
. (1.18)
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1.6 Classical ModMax
In recent work [6], it was shown that there is a unique family of Lagrangians which
satisfy these two constraints and thus preserve these two symmetries of Maxwell’s
equations. This family of Lagrangians is ModMax, and is a family of theories as it
satisfies these conditions for any real value of a dimensionless constant γ ∈ R that
parametrizes the family.

As expected, we can write the ModMax Lagrangian in terms of the two Lorentz
invariants S and P with

L = S cosh γ + sinh γ
√
S2 + P 2 (1.19)

or equivalently, using the definitions of S and P ,

= −cosh γ
4

FµνF
µν +

sinh γ
4

√
(FµνF µν)2 +

(
FµνF̃ µν

)2
(1.20)

= −cosh γ
2

(
E2 − B2

)
+

sinh γ
2

√
(E2 − B2)2 + 4 (E · B)2, (1.21)

where γ is interpreted as the dimensionless coupling constant that determines
the strength of the nonlinear self-interaction in the second term. Notice that
when γ = 0 we recover Maxwell’s Lagrangian as the nonlinear term disappears as
sinh (0) = 0.

While this family of Lagrangians possesses the symmetries of Maxwell’s equations
for all values of γ ∈ R, for γ < 0 the theory predicts faster than light propagation
of photons which violate causality. Therefore, we take γ > 0 for which causality is
preserved [1, 6].

Applying the Euler-Lagrange equations, we find the equations of motion of the
theory to be

cosh γ∂µF µν + sinh γ∂µ

(
SF µν + PF̃ µν

√
S2 + P 2

)
= 0, (1.22)

⇒ ∂µF
µν = tanh γ∂µ

(
SF µν + PF̃ µν

√
S2 + P 2

)
. (1.23)

Notice that while these equations are nonlinear, if the field satisfies P = aS for
constant a ∈ R, then they linearise.

Further, as ModMax preserves the conformal symmetry of Maxwell’s equations,
it is also invariant under conformal transformations. However, more commonly,
one makes use of the fact that conformal invariance implies that the stress energy
tensor of the theory is traceless.
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Theorem 1: Given a conformally invariant Lagrangian L, the stress energy
tensor [11] defined by

Tµν = −2
∂L
∂gµν

+ gµνL, (1.24)

is traceless such that

T µ
µ = 0. (1.25)

Applying this to ModMax, we find that the stress energy tensor can be written as

Tµν = −2

(
∂L
∂S

∂S

∂gµν
+
∂L
∂P

∂P

∂gµν

)
+ gµνL, (1.26)

where

∂S

∂gµν
= −1

2
F ρ
µ Fνρ

∂P

∂gµν
= −1

4

(
F ρ
µ F̃νρ + F ρ

ν F̃µρ

)
. (1.27)

In fact we have

T µν =

(
F µ

ρF
νρ − 1

4
ηµν (FρτF

ρτ )

)
∂L
∂S

(1.28)

where

∂L
∂S

= cosh γ − sinh γ FµνF
µν√

(FµνF µν)2 +
(
FµνF̃ µν

)2 . (1.29)

From Eq. (1.28), we see immediately that T µ
µ = 0, and thus ModMax is conformal.

1.7 Experimental Observability of ModMax
Despite the lack of study at the quantum level, classical analysis of ModMax
indicates that it predicts a refractive index of the vacuum n 6= 1[1]. This is not
unexpected as the nonlinearities that arise within the standard model also predict
a vacuum refractive index differing from n = 1.

The most precise experimental test of the nonlinearity of the vacuum was recently
conducted by the PVLAS experiment (Polarizzazione del Vuoto con LASer, “polar-
ization of the vacuum with laser”). Using a cavity with mirrors, their experiment
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attempts to observe any interaction of light with itself or with the vacuum (i.e.
spontaneous pair production). Due to the extremely small scale of any present
nonlinearity, they were able to obtain an upper bound of γ ≤ 3 × 10−22 (dimen-
sionless) with lower bound experiments currently underway [12]. This suggests
that if ModMax is an accurate description of our universe’s electrodynamics, it’s
nonlinear contribution is very small.

Specifically, the PVLAS experiment proceeds by measuring the birefringence of
the vacuum through how far its refractive index differs from n = 1 with ModMax
predicting

∆nModMax = eγ − 1 ≈ γ. (1.30)

While PVLAS observed a difference in refractive index of ∆nObs ≤ 3× 10−22 (di-
mensionless) [12], QED predicts ∆nQED ∼ 4 × 10−24 [1] and thus there remains
two orders of magnitude of parameter space for ModMax to have observable con-
tributions.





2
Review: Quantization of Quantum

Electrodynamics

Prior to considering ModMax in a quantum context, we review the quantization of
quantum electrodynamics (QED) and the techniques applicable to such a theory:
with and without interactions with matter. We also review the effective action
which will prove instrumental in the quantization of ModMax.

2.1 Quantum Electrodynamics (QED)
Maxwell’s Lagrangian translates smoothly to it’s quantum counterpart, the Quan-
tum Electrodynamics (QED) Lagrangian. Considering only free photons (i.e. no
matter/electrons), we can describe electromagnetic waves with an identical La-
grangian to Maxwell’s with

L = −1

4
FµνF

µν (2.1)

where this leads to an action S given by

S [A] =

∫
d4xL (2.2)

=
1

2

∫
d4xAµ (x)

(
∂2gµν − ∂µ∂ν

)
Aν (x) . (2.3)

11
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Note that with the Fourier transform of this field, given by

Aµ (k) =

∫
d4x eikνx

ν

Aµ (x) , (2.4)

the action integral can be written as

S [A] =
1

2

∫
d4x d4k1 d4k2 e

kα1 xαAµ (k1)
(
∂2gµν − ∂µ∂ν

)
eik

β
2 xβAν (k2) (2.5)

where evaluating the derivatives on the exponential yields

=
1

2

∫
d4x d4k1 d4k2 e

kα1 xαAµ (k1)
(
−k22gµν + kµ2k

ν
2

)
eik

β
2 xβAν (k2) (2.6)

and grouping the exponentials,

=
1

2

∫
d4x d4k1 d4k2Aµ (k1)

(
−k22gµν + kµ2k

ν
2

)
ei(k1+k2)·xAν (k2) (2.7)

reveals that with δ4 (k1 + k2) =

∫
d4x ei(k1+k2)·x, integrating over x yields

=
1

2

∫
d4k1 d4k2Aµ (k1)

(
−k22gµν + kµ2k

ν
2

)
Aν (k2) δ

4 (k1 + k2) (2.8)

where integrating over k2 absorbs the δ function and enforces k ≡ k1 = −k2 leaving

S [A] =
1

2

∫
d4k Aµ (k)

(
−k2gµν + kµkν

)
Aν (−k) . (2.9)

This form of the action will prove useful.

2.2 Functional Integrals
In quantum field theory, there is an analogue of the partition function Z from
statistical mechanics called the generating functional Z [J ] which depends on an
arbitrary external source J (x). J (x) is the analogue of an external magnetic field
B. The generating functional is a convenient albeit abstract method to determine
correlation functions.
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Definition 2: For the electromagnetic field, the generating functional [8, 9]
is given by

Z [J ] =

∫
DA exp

(
iS [A] + i

∫
d4x Jµ (x)A

µ (x)

)
, (2.10)

where
∫

DA is a functional integral, that is, it integrates over all possible
functions or field configurations Aµ (x) can take. One can think of this as the
continuous analogue of a sum over all possible states that a system can take
as in the partition function.

Namely, taking derivatives of the generating functional yields correlation func-
tions such that

〈Aµ1 (x1) · · ·Aµn (xn)〉 = (−i)n δnZ [J ]

δJµ1 (x1) · · · δJµn (xn)

∣∣∣∣
J=0

, (2.11)

where the nth order correlation function 〈Aµ1 (x1) · · ·Aµn (xn)〉 can be used to
obtain probability amplitudes for a given interaction or decay process. One can
also represent correlation functions in terms of Feynman diagrams as we will see.

However, one notices that the action S [A] in Eq. (2.9) vanishes for all potentials
Aµ (k) = kµα (k) where α (k) is any scalar function as

S [αk] = −1

2

∫
d4k α2kµ

(
−k2gµν + kµkν

)
kν (2.12)

= −1

2

∫
d4k α2

(
−k4 + k4

)
(2.13)

= 0. (2.14)

This is problematic for the theory as the partition function evaluated at J = 0 (i.e.
no external source) leads to

Z [0] =

∫
DA exp (iS [A]) (2.15)

=

∫
DAe0 (2.16)

=

∫
DA1, (2.17)

which diverges as there are uncountably infinite different possible field configura-
tions Aµ (x) can take. This divergence in fact arises due to a lack of uniqueness in
this theory’s description of a given physical field configuration.
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Claim. Namely, one can shift Aµ (x) by

Aµ (x) → Aµ (x) + ∂µα (x) , (2.18)

for an arbitrary function α (x), without changing the physical implications of the
theory. This shift is called a gauge transformation.

Note. We suppress the x dependence of α for brevity.

Proof. The field strength tensor, Fµν = ∂µAν − ∂νAµ transforms under this
shift to

Fµν → ∂µ (Aν + ∂να)− ∂ν (Aµ + ∂µα) (2.19)

where as partial derivatives commute, yields

= ∂µAν − ∂νAµ (2.20)
= Fµν . (2.21)

As the equations of motion, or equivalently the electric and magnetic fields
can be written in terms of Fµν , the field configuration Aµ + ∂µα has identical
physical implications and dynamics to Aµ.

More generally we notice that the action itself is invariant under this transformation
(as it can be written purely in terms of Fµν as S = −1

4
FµνF

µν) such that

S [Aµ] = S [Aµ + ∂µα] . (2.22)

This is referred to as a gauge degree of freedom, and is remedied by fixing the
gauge which means we only count physically distinct states.

2.3 Faddeev-Popov Gauge Fixing
The cleanest way to achieve this gauge fixing in a path integral approach is through
a method pioneered by Faddeev and Popov [13].
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Definition 3: A Lagrangian L [A] has local gauge symmetry if it is invariant
under a gauge transformation

Aµ (x) → Aµ + ∂µα (x) , (2.23)

where α (x) is again an arbitrary function. Local here refers to the spacetime
dependence of α (x). If it were constant α (x) = C ∈ R, it would be a global
symmetry.

To fix the gauge, we define a gauge fixing function G (A) that is zero for only one
of every physical/gauge inequivalent state. It can be chosen to take the form

G (A) ≡ ∂µA
µ − ω (x) , (2.24)

such that G (A) = 0 for only ∂µA
µ = ω (x). If the functional integral contained

δ (G (A)), then this would select only unique physical states.

Note. Under composition by a function g : Rn → Rn, the delta function satisfies∫
dnx δn (g (x)) f (g (x)) det (∂jgi) =

∫
dnx δn (x) f (x) . (2.25)

If we integrate over a (infinite dimensional) space of functions Dα rather than Rn,
the analogous identity is∫

Dαδ (g (α)) f (g (α)) det
(
δg (α)

δα

)
=

∫
Dαδ (α) f (α) . (2.26)

Choosing f (α) = 1, this reduces to∫
Dαδ (g (α)) det

(
δg (α)

δα

)
= 1. (2.27)

This identity appears promising and indeed, we can insert it into the functional
integral to select only physical states. As g must be a function of α we choose
g (α) ≡ G (Aµ + ∂µα (x)) = ∂µ (A

µ + ∂µα (x))−ω (x), and insert the left hand side
of Eq. (2.27) into the functional integral yielding

Z [0] =

∫
DA exp (iS [A])

(∫
Dαδ (g (α)) det

(
δg (α)

δα

))
. (2.28)

From the definition of g (α), one can see that δg (α)
δα

= ∂µ∂
µ is independent of α

and thus can be factored out as a constant. We then see

Z [0] = det
(
∂2
) ∫

DA exp (iS [A])

(∫
Dαδ (G (Aµ + ∂µα))

)
. (2.29)
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As S [Aµ] = S [Aµ + ∂µα] as it is gauge invariant, and DAµ = D (Aµ + ∂µα) as the
space of functions is similarly invariant, we notice that we can write Z [0] purely
in terms of Aµ + ∂µα. However, as it is an integration variable, we can substitute
back Aµ + ∂µα → Aµ, removing all explicit α dependence to find

Z [0] = det
(
∂2
)(∫

Dα
)∫

DA exp (iS [A]) δ (G (A)) , (2.30)

namely, that the Dα integral factors out, amounting to an infinite constant (without
physical implications), and that we have obtained the δ (G (A)) = δ (∂µA

µ − ω (x))
desired to select only physical states. As this expression holds for any fixed function
ω (x), it holds identically for any normalized linear sum of ω (x)’s. Faddeev and
Popov’s essential insight was to integrate over a normalized Gaussian weighted
envelope in the function space of ω (x) of standard deviation ξ such that

Z [0] = N (ξ)

∫
Dω exp

(
−i
∫

d4x
ω2

2ξ

)∫
DA exp (iS [A]) δ (∂µA

µ − ω) , (2.31)

where N (ξ) ensures the Gaussian is normalized, and absorbs the other constant
factors for brevity. Evaluating the Dω integral absorbs the delta function enforcing
∂µA

µ = ω and thus yielding

Z [0] = N (ξ)

∫
DA exp

(
−i
∫

d4x
(∂µA

µ)2

2ξ

)
exp (iS [A]) , (2.32)

where we see that the exponential term modifies the Lagrangian with the addition
of a term of the form

Lgauge fixed = L − 1

2ξ
∂µA

µ∂νA
ν . (2.33)

where ξ ∈ R is referred to as the gauge parameter and can be fixed to any desired
number. It can be shown that observable quantities will always be independent of
your choice of ξ, however some choices more significantly simplify calculations.

This arduous derivation of gauge fixing applies not only to QED, but rather any
abelian gauge theory, including ModMax. Namely, given an abelian gauge theory
with Lagrangian L, subtracting the gauge fixing term in Eq. (2.33) fixes the gauge,
leading to well defined observables and behaviour.

Returning to the momentum space action in Eq. (2.9), we see that after gauge
fixing, the action can be written as

S [A] =
1

2

∫
d4k Aµ (k)

(
−k2gµν +

(
1− 1

ξ

)
kµkν

)
Aν (−k) , (2.34)

which no longer vanishes for Aµ = ∂µα, and thus leads to a well defined generating
functional.
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2.4 The Effective Action
Further drawing on the analogy with statistical mechanics, recall that the free
energy F (B) of a system dependent on a magnetic field B can be obtained from
the partition function Z [B] by performing

F ≡ −T lnZ [B] . (2.35)

Taking the derivative of F with respect to B then yields the magnetization M of
the system,

M ≡ −∂F
∂B

, (2.36)

from which the Gibbs free energy G can be found by Legendre transforming F
such that

G ≡ F −BM. (2.37)

Each of these thermodynamic quantities has an analogue within quantum field
theory. Namely, the generating functional (which takes the place of the partition
function) is defined in terms of an external source J (x), which is the generalization
of the external magnetic field B. As such, we can define the analogue of the free
energy

E [J ] ≡ −i δ

δJ (x)
lnZ [J ] , (2.38)

for which a further derivative provides the analogue of the magnetization: the
expectation value of the field Cµ ≡ 〈Aµ (x)〉 such that

δ

δJ (x)
E [J ] = −〈Aµ (x)〉 = −Cµ. (2.39)

Notice that the magnetisation is a global property (i.e. without xµ dependence)
that characterizes the whole system in the same fashion as the expectation value
of the field.

Definition 4: Lastly, Legendre transforming E [J ], we obtain the effective
action

Γ [C] ≡ E [J ]−
∫

d4x Jµ (x)Cµ (x) , (2.40)

which is a functional depending only on Cµ, the expectation value of the field.
This action provides an effective description of the full theory at a sufficient
scale, and thus is an invaluable tool to obtain observable quantities from
otherwise unsolvable theories.
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Taking the derivative of the effective action with respect to Cµ, it can be shown
that

δ

δCµ

Γ [Cµ] = −J (x) , (2.41)

and thus in the sourceless case where J (x) = 0, we find
δ

δCµ

Γ [Cµ] = −J (x) . (2.42)

Namely, Cµ = 〈Aµ (x)〉 that solves this equation extremizes the action and thus
corresponds to a stable solution Aµ (x) of the original theory. The effective action
therefore allows us to study the large scale effective behaviour when quantum
effects are cumulatively taken into account.

2.5 Propagators and Correlation Functions
While we do not prove it here, the effective action can equivalently be obtained
by evaluating all Feynman diagrams with classical external vertices constructible
within a theory. One constructs and evaluates diagrams by obtaining the Feynman
rules of the theory: namely, the factors to include in the calculation for each
possible line and vertex that make up a diagram. As we will see here, each line
within a diagram represents the propagation of a particle, and each vertex an
interaction.

Definition 5: Given a field Aµ (x), the propagator of that field satisfies

Aµ (x) =

∫
d4y Dµν (x− y)Aν (y) , (2.43)

in that it propagates the field Aν (y) to x through all possible paths.

When we draw a Feynman diagram, each internal line represents a propagator
corresponding to that field

y, ν x, µ = Dµν (x− y) , (2.44)

propagating it from y to x.

With the above gauge fixing, the propagator for the electromagnetic field can now
be found to satisfy (

−k2gµν +
(
1− 1

ξ

)
kµkν

)
Dνρ (k) = iδµρ , (2.45)
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which has solution

Dνρ (k) =
−i
k2

(
gνρ − (1− ξ)

kνkρ
k2

)
. (2.46)

Setting ξ = 1 here, as we are free to do so without affecting observable quantities,
is referred to as Feynman gauge, and clearly simplifies the form of the propagator1

greatly to

Dνρ (k) =
−igνρ
k2

. (2.47)

We will proceed with this choice of gauge for simplicity.

2.6 QED Diagrams
With the propagator for the photon obtained, one can now look at introducing
electrons as described in QED. The full Lagrangian is of the form

LQED = −1

4
FµνF

µν + ψ (i∂µγ
µ −m)ψ︸ ︷︷ ︸

L0

−eψγµAµψ, (2.48)

where ψ (x) is a spinor field that describes electrons/positrons, e is the electric
charge, and γµ are the Dirac matrices that satisfy {γµ, γν} = 2gµν .

The first two terms in this Lagrangian (together forming L0) describes how photons
and electrons freely evolve, and the third determines their interaction. Like most
quantum field theories, this Lagrangian is unsolvable in its exact form and thus
we move to using perturbation theory, where we assume the interaction of the
electrons and photons is relatively small. This is valid as the electric charge, e� 1,
here determines the strength of this interaction. This allows us to Taylor expand
the interaction term such that

exp
(
i

∫
dxL

)
= exp (L0) exp

(
i

∫
dx
(
−eψγµAµψ

))
(2.49)

with expx ∼ 1 + x+O (x2),

= exp (L0)

(
1− ie

∫
dxψγµAµψ

)
+O

(
e2
)
, (2.50)

1Formally, to prevent a pole at k2 = 0, one replaces the denominator with k2 + iε such that
the pole is removed, and the limit of ε → 0 is taken after integration.
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where the 1 term corresponds to the free evolution of particles, and the nontrivial
term corresponds to an interaction vertex involving two fermions and a photon. The
presence of a ψ and a ψ indicates that a fermion enters and leaves this interaction,
and the Aµ field indicates that a photon is involved. In fact, with the identification
of these fields, the remaining factors in this term yield, in the language of Feynman
diagrams, the form of the QED vertex

γ = ieγµ
∫

d4x , (2.51)

where we draw photons as wavy lines and fermions as straight lines with arrows
indicating the flow of charge. This factor is to be included in the evaluation of
Feynman diagrams whenever this vertex appears.

If we assume that the photon field is an external classical field Cµ (x), that is the
line exits the diagram, we instead obtain the vertex rule

γ
= ieγµ

∫
d4xCµ (x) . (2.52)

To obtain the effective action Γ, and thus the form of the largest quantum cor-
rections, we need to construct all possible Feynman diagrams formed out of this
vertex that contain one loop. Higher numbers of loops contribute less significantly.
Observe that this consists of the following series of diagrams.

Γ = + + + · · ·

(2.53)
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Evaluating this series of diagrams using the QED Feynman rules for the vertex and
photon propagator (as derived above) yields an effective action, Γ [Cµ (x)], that can
be used to derive physical observables. This action is referred to as effective, as we
have integrated out the dependence on electrons/positrons in the evaluation of the
Feynman diagrams. Therefore, it is effective in that it describes photons and their
self-interaction within the standard model, but is not the full, original theory. This
effective action was first derived by Julian Schwinger [14] in 1951. This result was
of particular interest as Schwinger also showed that this effective action predicts
that at sufficiently high electric field strengths, the vacuum will produce electrons
and positrons in pairs. While the field strength required for pair production to
occur is unreachable by modern experimentalist techniques, it is widely accepted
as a valid prediction of QED.

It is an aim of this project to derive the analogous Feynman rules for ModMax,
and to use them to evaluate a similar infinite series of diagrams exactly to find the
effective action, Γ [Cµ (x)].





3
ModMax in the Background Field Method

With the quantization of QED detailed, we seek to quantize ModMax. However,
as well will see, ModMax is not amenable to traditional quantization techniques
due to the nonlinear form of the self-interaction. Therefore, I quantize ModMax
within the background field method. I show that the one loop effective action
for backgrounds with constant field strength exactly vanishes using dimensional
regularization as well as the two loop effective action to order γ2. I further find
that allowing the background to vary, logarithmic divergences emerge.

3.1 Background Field Method
Recall that the ModMax Lagrangian [1] is given by

L = S cosh γ +
√
S2 + P 2 sinh γ, (3.1)

where we recall the respectively scalar and pseudoscalar invariants S = −1
4
FµνF

µν

and P = −1
4
FµνF̃

µν .

As γ = 0 recovers Maxwell’s Lagrangian, L = S, the most natural interpretation
of the ModMax Lagrangian is that the S cosh γ term provides a Maxwell-like free
propagation of the photon, and the

√
S2 + P 2 sinh γ term is an interaction of the

photon field with itself. This interaction is small relative to the free evolution, as
sinh γ O(γ)∼ γ � 1

O(γ)∼ cosh γ.

23
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Thus, as this is a self-interacting theory, one may desire to proceed using canonical
quantization techniques as applied to QED. However, the nonlinear form of the
interaction is not compatible with the familiar perturbative Feynman diagram
expansion, where we require positive integer powers of the fields to proceed. The
natural impulse is then to Taylor expand the interaction, assuming that the essential
physics can be captured at low powers of the field, or equivalently by weak fields
(as higher powers would be comparatively negligible). However, ModMax does not
reduce to Maxwell’s equations in the weak field limit, only in the γ → 0 limit, and
thus such an approach is ill-suited. Clearly an alternative approach is needed.

As such, we begin by employing the background field method in which we consider
a fixed classical background with quantum fluctuations about this background [15]
(See Fig. 3.1). Mathematically, this is performed by taking the photon field Aµ

and decomposing it into a classical field Cµ and a quantum field aµ such that the
quantum oscillations on the classical background are equivalent to the original field
with

Aµ = Cµ + aµ. (3.2)

x

Aµ(x)

Cµ

Cµ + aµ

Figure 3.1: Pictorial depiction of background field method splitting of an
arbitrary field Aµ (x) into a classical background field and a quantum oscillation
about the background. The classical field here is varying spatially, but can also be
taken to be constant.

This linear splitting of the field leads to a linear splitting in the field strength of

⇒ Fµν = ∂µ (Cν + aν)− ∂ν (Cµ + aµ) (3.3)
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into classical and quantum field strengths given by

= (∂µCν − ∂νCµ)︸ ︷︷ ︸
Cµν

+(∂µaν − ∂νaµ)︸ ︷︷ ︸
fµν

(3.4)

≡ Cµν + fµν , (3.5)

where Cµν is the field strength tensor for the classical field Cµ and fµν is the field
strength tensor for the quantum field aµ. This splitting now allows us to tackle
the nonlinear terms in the Lagrangian perturbatively, as we can expand in powers
of the quantum terms around a fixed classical background field term.

Additionally, to simplify the problem further, we can assume that the classical field
is stationary both in space and time. This reduces the predictive power of the
calculations, but simplifies the process dramatically. This assumption is equivalent
to neglecting ∂µCνρ as negligible in the effective action, Γ [Cµ]. Schwinger [14]
made this assumption when calculating the effective action for QED. We will first
investigate the case where we consider the background stationary before returning
to generalize to the more difficult case.

3.2 Taylor Expansion
We notice that the invariants S and P can thus be decomposed into background
and quantum field strength tensors as

S = −1

4
FµνF

µν = −1

4
CµνC

µν︸ ︷︷ ︸
SC

−1

2
Cµνf

µν −1

4
fµνf

µν︸ ︷︷ ︸
Sa

(3.6)

S = SC − 1

2
Cµνf

µν + Sa (3.7)

where we desire to make use of the constant classical field strength ∂µCνρ = 0.
This in fact implies that the cross term vanishes as

Cµν (∂
µaν) = ∂µ (Cµνa

ν)− (∂µCµν) a
ν (3.8)

where the first term is a total derivative that amounts to a boundary term in the
action (that does not influence the physics) and the second is a derivative of the
classical field strength. Therefore, we have Cµνf

µν = 0 and can write

S = SC + Sa (3.9)

and identically we have

P = PC + Pa, (3.10)
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where PC ≡ −1
4
CµνC̃

µν and Pa ≡ −1
4
fµν f̃

µν analogously.

Note that the cross terms do not vanish in S2 and P 2 as they are no longer a total
derivative and we instead have

S2 = S2
C − SCCµνf

µν︸ ︷︷ ︸
topological

+2SCSa +
1

4
CµνCρτf

µνfρτ − SaCµνf
µν︸ ︷︷ ︸

O(a3)

+ S2
a︸︷︷︸

O(a4)

.

(3.11)

We refer to total derivative terms as topological, as they only contribute in nontrivial
topological spaces beyond our study. Neglecting terms of order O (a3) and greater,
we are left with

S2 = S2
C − SCCµνf

µν︸ ︷︷ ︸
topological

+2SCSa +
1

4
CµνCρτf

µνfρτ (3.12)

P 2 = P 2
C − PCC̃µνf

µν + 2PCPa︸ ︷︷ ︸
topological

+
1

4
C̃µνC̃ρτf

µνfρτ (3.13)

where discarding topological terms, we arrive at

⇒ S2 + P 2 = S2
C + P 2

C + 2SCSa +
1

4

(
CµνCρτ + C̃µνC̃ρτ

)
fµνfρτ . (3.14)

We see that the first two terms, S2
C + P 2

C , are purely background dependent and
thus serve as a nontrivial classical point to Taylor expand with respect to. Namely,
Taylor expanding

√
S2 + P 2 about S2

C + P 2
C we see that

√
S2 + P 2 ≡

√
S2
C + P 2

C +Q =
√
S2
C + P 2

C +
Q

2
√
S2
C + P 2

C

− Q2

8 (S2
C + P 2

C)
3
2

+O
(
Q3
)

(3.15)

where the quantum terms are grouped with

Q ≡ 2SCSa + 2PCPa −
(
SCCµν + PCC̃µν

)
fµν︸ ︷︷ ︸

topological

+
1

4

(
CµνCρτ + C̃µνC̃ρτ

)
fµνfρτ

(3.16)

where the topological terms are included as they contribute in powers of Q, and
up to terms quadratic in the quantum field we have

Q2 =
(
S2
CCµνCρτ + SCPC

(
C̃µνCρτ + CµνC̃ρτ

)
+ P 2

CC̃µνC̃ρτ

)
fµνfρτ +O

(
a3
)
.

(3.17)
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Therefore with the classical field Lagrangian defined by

LC ≡ SC cosh γ +
√
S2
C + P 2

C sinh γ (3.18)

we can thus write the full Lagrangian as

L = LC + Sa cosh γ + (2SCSa +Bµνρτf
µνfρτ ) sinh γ +O

(
a3
)
, (3.19)

where I further define

Bµνρτ ≡ CµνCρτ + C̃µνC̃ρτ

8
√
S2
C + P 2

C

−
S2
CCµνCρτ + SCPC

(
C̃µνCρτ + CµνC̃ρτ

)
+ P 2

CC̃µνC̃ρτ

8 (S2
C + P 2

C)
3
2

,

(3.20)

to capture the classical field dependence in the interaction. This tensor coinciden-
tally has the same symmetries as the Riemann curvature tensor Bµνρτ = Bρτµν

and Bµνρτ = −Bνµρτ = −Bµντρ. Here it is constant as it is purely a function of the
classical field strength and its dual.

The Lagrangian for the quantum field thus suggests the quantum field has a
Maxwell-like propagation Sa cosh γ and an interaction vertex quadratic in the
quantum field aµ.

As with the QED Lagrangian, we have that we can rearrange Sa into a more useful
form with

Sa = −1

4
fµνf

µν =
1

2
aν (∂ρ∂

ρgµν − ∂µ∂ν) aµ (3.21)

and using the symmetry of Bµνρτ , we have

Bµνρτfµνfρτ = 4aν (B
µνρτ∂µ∂ρ) aτ , (3.22)

the Lagrangian can be expressed as

L = LC +
cosh (γ)

2
aν (∂ρ∂

ρgµν − ∂µ∂ν) aµ

+ sinh (γ) aν
(
SC∂ρ∂

ρgµν − SC∂
µ∂νaµ + 4Bανβµ∂α∂β

)
aµ. (3.23)

As ModMax is an abelian gauge theory, it must be gauge fixed for this Lagrangian
to give meaningful results. Applying the Faddeev-Popov procedure results in the
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addition of the gauge fixing term −ξaν∂ν∂µaµ where ξ here can be background
dependent. Taking the Feynman gauge equivalent of ξ = 1

2
cosh γ − SC sinh γ the

Lagrangian simplifies to

L = LC +
cosh (γ)

2
aν∂ρ∂

ρgµνaµ + sinh (γ) aν
(
SC∂ρ∂

ρgµν + 4Bανβµ∂α∂β
)
aµ.

(3.24)

With ∂µ → ikµ, this Lagrangian can be expressed in momentum space as

L = LC − cosh (γ)

2
aνk

2gµνaµ − sinh (γ) aν
(
SCk

2gµν + 4Bανβµkαkβ
)
aµ. (3.25)

Note. We consider the last term in this Lagrangian as an interaction term despite
the classical field strength tensors that appear being non-dynamical. Namely, as
we have ∂µCνρ = 0, the classical field strengths are independent of xµ and thus
can be factored out of the action integral as constants. However this term in
the Lagrangian still represents an interaction of the quantum field with a fixed
background source distinct from the propagator term.

With the sinh γ term interpreted as an interaction vertex between the classical and
quantum fields, the momentum space propagator for the quantum field is then
given by

− cosh γk2gµνDνρ = iδρµ (3.26)

⇒ Dνρ =
1

cosh γ
−igνρ

k2
, (3.27)

which is entirely analogous to the propagator for the quantum field in QED. See
Appendix D for a derivation of this propagator.

3.3 One Loop Effective Action
I will draw quantum fields as wavy lines and the background field as an unlabelled
solid line (when not omitted).

To obtain the one loop effective action Γ, it remains to evaluate all Feynman
diagrams containing at most one loop that are constructible out of the quantum
field propagator and the interaction vertex. This corresponds to a single infinite
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series of diagrams given by

Γ = + + + · · · . (3.28)

To evaluate such diagrams, we need to derive the vertex factor for ModMax, which
together with the propagator is referred to as the Feynman rules. Reading off the
Lagrangian, we see that the interaction vertex takes the form

p, ν

p, µ

= −2 sinh (γ)
(
SCp

2gµν + 4Bανβµpαpβ
)
, (3.29)

where notice that no momentum can flow through the classical fields in the inter-
action as ∂µCνρ = 0.

The first diagram in this infinite series is given by

k, µ

=

∫
ddk

(2π)d
sinh (γ)

(
2SCk

2gµν + 8Bανβµkαkβ
)
Dνµ (3.30)

where the replacement kαkβ → k2

4
gαβ and the propagator derived above yield

= −i coth (γ)

∫
ddk

(2π)d
(
2SCk

2gµν + 8Bανβµgαβk
2
) gνµ
k2

(3.31)

= −8i coth (γ) (SC +Bαν
αν )

∫
ddk

(2π)d
1. (3.32)

Notice the lack of k dependence in this integral. Proceeding regardless, this
contraction simplifies greatly with the use of the identity

−1

4
C̃µνC̃

µν = −SC (3.33)
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to

Bαν
αν = −S

3
C + SCP

2
C − SCP

2
C

2 (S2
C + P 2

C)
3
2

(3.34)

Bαν
αν = − S3

C

2 (S2
C + P 2

C)
3
2

. (3.35)

However, as the integral is independent of k, it is scaleless and thus while Λd

divergent with a naive cutoff, using dimensional regularization we can show it is
exactly zero.

3.4 Dimensional Regularization
Divergent quantities that one would naively expect to be physical are a common
occurrence in quantum field theory. Any sufficiently sophisticated theory gives
rise to such divergences at some number of loops, and requires renormalization,
the process of recovering finite physical results from such theories by redefining
constants in the Lagrangian [8, 16, 17]. Such redefinitions absorb the divergences
that arise.

However, first one must characterize the divergence, the process of which is referred
to as regularization. This process is not unique and there are many regulators one
can make use of. For example, for the above integral, the naive method is called
cutoff regularization where one introduces a maximum momentum scale k2 ≤ Λ2

such that our integral now reads,∫
ddk

(2π)d
1 −→

∫ Λ

−Λ

ddk

(2π)d
1. (3.36)

One would then have Λ dependence in the Lagrangian, with the intention of taking
the limit of Λ → ∞ to recover the original theory.

Note. The final result of regularization is expected to be independent of the
regulator used. If two regulators lead to different observable quantities, often a
symmetry is being broken by one or both regulators.

While cutoff regularization is approachable, it is not the most elegant method.
This is largely caused by the introduction of a characteristic length scale Λ in our
otherwise scaleless theory.

Instead, we will make use of dimensional regularization where we consider the
dimension to be a free parameter d ∈ R \ N. The natural numbers N are excluded
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from the domain here as they lead to divergences and thus undefined values.
However, the limit in which d→ N (usually d = 4) is well defined. We then appeal
to analytic continuation, where as a given calculation is an analytic function of the
dimension d, we define the value at d = 4 to agree with the limit. This is a valid
regulator, and introduces no characteristic scale. We use dimensional regularization
throughout this thesis as it causes a large number of otherwise difficult integrals
to vanish.

Claim. In fact, returning to the integral at hand, using dimensional regularization,
we can show that ∫

ddk

(2π)d
1 → 0, (3.37)

as d→ N.

Proof. We begin by considering d /∈ Z dimensional Euclidean space (rather
than Minkowski) for convenience. Taking the integral∫

ddk

(2π)d
1 =

∫
ddk

(2π)d
k2

k2 +m2
+

∫
ddk

(2π)d
m2

k2 +m2
. (3.38)

This is a specific case of a known integral [16], with general form given by∫
ddk

(2π)d
k2β

(k2 +m2)α
=

Γ
(
β + d

2

)
Γ
(
α− β − d

2

)
(4π)

d
2 Γ (α) Γ

(
d
2

) m
2
(

d
2
−α+β

)
, (3.39)

where Γ (n+ 1) = n! is the Gamma function, the generalization of the factorial
to the real numbers using analytic continuation. With α = β = 1 we see that∫

ddk

(2π)d
k2

k2 +m2
=

Γ
(
1 + d

2

)
Γ
(
−d

2

)
(4π)

d
2 Γ
(
d
2

) md (3.40)

where Γ (x+ 1) = xΓ (x) implies

=

(
d

2

)
Γ
(
d
2

)
Γ
(
−d

2

)
(4π)

d
2 Γ
(
d
2

) md (3.41)



32 ModMax in the Background Field Method

and for β = 0 we find

m2

∫
ddk

(2π)d
1

k2 +m2
= m2Γ

(
d
2

)
Γ
(
1− d

2

)
(4π)

d
2 Γ
(
d
2

) md−2 (3.42)

where Γ (x+ 1) = xΓ (x) similarly implies

=

(
−d
2

)
Γ
(
d
2

)
Γ
(
−d

2

)
(4π)

d
2 Γ
(
d
2

) md, (3.43)

which is the negative of the previous integral, and thus their sum vanishes as
desired ∀d ∈ R \ N. By appealing to analytic continuation of this result, it
holds identically for d = 4.

In fact, the above argument is generalizable to show that any integral of the form∫
ddk

(2π)d
k2α, (3.44)

vanishes in dimensional regularization for α ∈ Z. Intuitively, this is because
the integral has no characteristic external scale dependence which is central in
dimensional regularization [18].

3.5 Generalization to nth order diagrams
Notice that the above result relies only on the momentum dependence of the
integral.

For a general nth order one loop diagram however, all insertions of additional
vertices do not change the momentum dependence of the integral. Namely, as we
will have n propagators (Eq. (3.27)) Dµν ∝ 1

k2
and n vertices (Eq. (3.29)) ∝ k2

which are all equal by momentum conservation (as we assumed no momentum flow
through the classical fields), the integral will be momentum independent as for the
1 vertex diagram.

In fact, as the vertex factor contains kαkβ rather than k2 we will first have to
perform the symmetrization of n metric tensors that leads to the replacement [8]

n∏
i=1

kα2ikα2i+1 → k2n (d− 2)!!

2
n
2 (n− 2 + d)!!

g(α1α2 · · · gα2nα2n+1). (3.45)
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Therefore we conclude that the perturbative one-loop effective action Γ, with con-
stant background field strength Cµν , vanishes through dimensional regularization.
This implies that there are no 1-loop corrections to the classical theory under these
assumptions.

3.6 Two Loops
The only two loop diagram to order γ (i.e. having one vertex as each carries
sinh γ O(γ)

= γ) is quartic in the quantum field

p

q

This vertex and diagram is also quartic in the classical field but these lines have
been suppressed for clarity (and due to the fact that they carry no momenta). To
evaluate this however, we need to return to the expansion of the square root√

S2
C + P 2

C +Q =
√
S2
C + P 2

C +
Q

2
√
S2
C + P 2

C

− Q2

8 (S2
C + P 2

C)
3
2

+
Q3

16 (S2
C + P 2

C)
5
2

− 5Q4

128 (S2
C + P 2

C)
7
2

. (3.46)

From Q and aµ power counting, we have that O (a4) term in the Lagrangian is

La4

sinh γ
=

1

2
√
S2
C + P 2

C

S2
a

− 1

8 (S2
C + P 2

C)
3
2

[(
2SCSa + 2PCPa +

1

4

(
CµνCρτ + C̃µνC̃ρτ

)
fµνfρτ

)2

+ 2
((
SCCµν + PCC̃µν

)
fµν
)((

SaCαβ + PaC̃αβ

)
fαβ
)]

+
3

16 (S2
C + P 2

C)
5
2

((
SCCαβ + PCC̃αβ

)
fαβ
)2

×
(
2SCSa + 2PCPa +

1

4

(
CµνCρτ + C̃µνC̃ρτ

)
fµνfρτ

)
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− 5

128 (S2
C + P 2

C)
7
2

((
SCCµν + PCC̃µν

)
fµν
)4
. (3.47)

This is unapproachable to ascertain the exact form of the background dependence.
However, as the quantum fields only appear in the field strengths, we notice that
we can write the vertex

LQ4 = sinh (γ)Aµνρταβσκf
µνfρτfαβfσκ (3.48)

where A is a background dependent, momentum independent tensor that captures
the structure of the vertex. It’s exact form is not important as we will see. Denoting
anti-symmetrization with A[µν] = Aµν − Aνµ observe that we can simplify this to

LQ4 = sinh (γ)A[µν][ρτ ][αβ][σκ]∂
µaν∂ρaτ∂αaβ∂σaκ. (3.49)

As each field has a derivative acting on it, we can express this vertex as

p, µ q, ν

k, ρ

r, σ

= sinh (γ)Bα β κ τ
µ ν ρ σpαqβkκrτ , (3.50)

where Bα β κ τ
µ ν ρ σ is also independent of the momenta and captures both the back-

ground dependence (from the A tensor) and the symmetrization of momenta from
different contractions. The explicit form of B is also not important. Therefore the
double loop diagram can be written with symmetry factor S = 8 [8] as

p, µ

q, ν

=
sinh γ
8

Bα β κ τ
µ ν ρ σ

∫
ddp ddq

(2π)2d
pαpβqκqτD

µρDνσ (3.51)

where with the propagator from Eq. (3.27) Dµρ = 1
cosh γ

−igµρ

k2
we have

=
coth γ
8 cosh γ

Bα β κ τ
µ ν ρ σ

∫
ddp ddq

(2π)2d
pαpβqκqτ

gµρgνσ

p2q2
(3.52)
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where applying the metric tensors yields

=
coth γ
8 cosh γ

Bα β κµτν
µ ν

∫
ddp ddq

(2π)2d
pαpβqκqτ
p2q2

(3.53)

where as before symmetry implies we can take pαpβ → p2

4
gαβ and identically for q

yielding

=
coth γ

128 cosh γ
B β µτν

βµ ντ

∫
ddp ddq

(2π)2d
1, (3.54)

for which, as we found above, a naive cutoff would suggest Λ2d divergence, however
the dimensional regularization result derived above allows us to conclude it vanishes.

Notice that we can insert a vertex along either of these loops which will not change
the momentum structure of the diagram and get us to γ2 order

p

p

q

,

and thus we conclude that this diagram will also vanish by similar arguments.

The only other diagram arising at order γ2 has two cubic vertices, which will come
from a Lagrangian

La3 = A[µν][ρτ ][αβ]∂µaν∂ρaτ∂αaβ, (3.55)
and leads to a vertex of the form

sinh (γ)Bµ ρ α
ν τ βk

1
µk

2
ρk

3
α. (3.56)

This diagram does not vanish and the full calculation using dimensional regular-
ization is shown in Appendix A. The diagram evaluates to

p

p− q

q
= (−i)3 sinh2 γ

2 cosh3 γ
Bµ1 ρ1 α1

ν1 τ1 β1
Bµ2ν1ρ2τ1α2β1×
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∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2
iΓ
(
1− d

2

)
(4π)

d
2 (d− 1)

[
qµ1qµ2q

d−4

(
1− d

2

)
− dgµ1µ2

8
qd−2

]
.

(3.57)

Ignoring the prefactors, we take d = 4 + 2ε with the intention of taking the limit
ε→ 0 ⇒ d→ 4. Using the expansion of

Γ (−1− ε) =
1

ε
− γ + 1, (3.58)

we find that the divergent part of this integral is

1

ε

∫
d4q

(2π)4
qρ1qρ2qα1qα2

q2
i

(4π)2 6

[
2qµ1qµ2 + gµ1µ2q

2
]
. (3.59)

This term is logarithmically divergent, and similarly to before, due to the presence
of the prefactor tensors, does not resemble the original Lagrangian. Notice that
where ∀ε > 0 ⇒ d 6= 4, we are left with a symmetrizable integral over q that
will vanish identically. By analytic continuation, in this regularization scheme we
therefore conclude that the integrals also vanish at d = 4.

Therefore the two loop effective action also vanishes at minimum to order γ2.
Proceeding further in this manner is impractical but we expect that a generalization
can be made to suggest that the effective action should vanish at all orders in γ and
at all loops. Allowing derivatives to act on the field strength such that ∂µCνρ 6= 0
contrary to what was assumed here, will lead to logarithmic divergences and
even constant diagrams as we will see below that will not vanish in dimensional
regularization.

3.7 Varying Backgrounds
Proceeding in a similar manner to before, we perform the background field method
splitting, only now without discarding terms of the form ∂µCνρ (as well as higher
derivatives). This leads to an entirely analogous Lagrangian

L = LC + S cosh γ + sinh γaµP µνaν (3.60)

where the background field dependence within P µν has become more complex with

P µν = (SC∂
ρ + ∂ρSC) ∂ρg

µν − ∂νSC∂
µ − ∂αPCε

ανρµ∂ρ + 2Bτµρν∂τ∂ρ + 2∂τB
τµρν∂ρ.
(3.61)
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When we held ∂µCνρ = 0 we were able to factor the classical field dependence out
of the integral as it was necessarily independent of xµ. However in the general
varying background case, this is no longer possible. Nonetheless, if we consider
P µν (x) to represent the cumulative effect of the background rather than just a
composite operator, then we can obtain Feynman rules for this theory. Namely, we
see in the interaction vertex (with the prefactor sinh γ), that we have two factors
of the quantum photon field aµ and one Pµν . As such, our interaction vertex has
two quantum photons (represented by wavy lines) and one cumulative classical
background photon (represented by a coiled line)

r =− p− q

p

q

µ, ν

= −i sinh γ
∫

d4xPµν (x) , (3.62)

entirely analogously to the QED case.

The only one-vertex diagram constructible in from this vertex vanishes by an
identical argument as in the constant background case, thus we move to the one
loop two vertex diagram. Applying the derived Feynman rules (i.e. the vertex
factor and propagator) we see that this diagram yields

q

`

`+ q

qµν ρτ
=

sinh2 γ

cosh2 γ

∫
dd`

(2π)d
gµρgντ

`2 (`2 + q2)
(3.63)

Applying dimensional regularization, we find by a similar argument as above,

=
1

d

Γ
(
2− d

2

)
(4π)

d
2

qd−4 (3.64)

where adding back in the prefactor external classical field dependence, we can
quote the final result as

=
1

d− 3

Γ
(
2− d

2

)
(4π)

d
2

∫
ddq

(2π)d
Pµν (q) q

d−4P µν (−q)

(3.65)
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where using Γ (1 + x) = xΓ (x),

= − d

d− 3

(
1− d

2

)
Γ
(
−d

2

)
2 (4π)

d
2

∫
ddq

(2π)d
Pµν (q) q

d−4P µν (−q)

(3.66)

With d = 4 + 2ε and taking ε→ 0 such that d→ 4, we see

=

(
1

ε

)
2

(4π)2

∫
d4q

(2π)4
Pµν (q)P

µν (−q) , (3.67)

which is not only divergent as ε → 0, but is also not of the form of the original
Lagrangian. If this result was of the form of the original Lagrangian, then we
can interpret such a diagram as suggesting a redefinition of a constant (such as γ)
within the original Lagrangian, to absorb this divergence. However, as this is not
the case, this suggests that ModMax is likely not a physical theory on the quantum
domain, without modification. Note that it is possible that there is a structure
hidden in such divergences which is of the form of the original Lagrangian, which
may only appear when evaluated to all loops or all orders in γ. As this is infeasible
to ascertain directly due to the increased complexity with order, we move to study
ModMax’s two dimensional analogue which may elucidate further insight.

Nonetheless, we have obtained the effective action for ModMax in both the static
and varying background case, thus characterizing the predictions of the theory on
the quantum level.



4
Scalar Field Analogue in Two Dimensions

With the quantization of ModMax characterized through the two-loop effective
action, I similarly study the scalar analogue of ModMax in d = 2 and show that
the methods applied to ModMax generalized appropriately. Two dimensional
conformal field theory is a highly active area of research, as conformal symmetry is
extremely restrictive and thus powerful in 1 + 1 spacetime dimensions. We expect
nontrivial results to emerge at a lower number of loops and thus such a toy model
can provide insight into the underlying physics.

Similarly, upon successfully quantizing a conformal field theory, the corrections
to the classical theory that arise can lead to the discovery of novel conformal
field theories at the classical level. This phenomenon can be referred to as a
classical conformal field theory generated quantum mechanically. However, if the
conformal symmetry is broken at the quantum level, referred to as an anomaly,
this is equally of interest as this often leads to observable predictions of the theory.
The corrections I obtain appear to respect conformal symmetry, however further
investigation is required into the properties of such generated classical conformal
field theories.

Through the generalization of the approach I developed above, I find that the
one loop effective action for backgrounds with constant field strength identically
vanishes as in the original theory. By allowing the background to vary, I find that
the first corrections to the classical theory arise at the order O (γ2), and resemble a

39
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QED-like operator dependent on the classical field. Motivated by the experimental
bound of γ ≤ 3× 10−22, I further calculated the contribution from all diagrams up
to order O (γ2), namely the infinite series of diagrams containing up to 2 vertices.

4.1 Background Field Method
Recall that in d = 4, the ModMax Lagrangian [1, 7] is given by

L = S cosh γ +
√
S2 + P 2 sinh γ. (4.1)

By dimensional reduction from ModMax in d = 4, one can define in d = 2 for N ≥ 2
scalar boson fields ϕi, (where i ∈ {1, · · · , N} labels the bosons) the Lagrangian
[19–21]

L =
cosh γ

2
∂µϕ

i∂µϕi +
sinh γ
2

√
2 (∂µϕi∂νϕi) (∂νϕj∂µϕj)− (∂µϕi∂µϕi)2, (4.2)

where we have implicit summation over i, j = 1, . . . , N which label the bosons. If
N = 1, the theory becomes trivial and reduces to L = eγ∂µϕ∂

µϕ. The analogue of
the field strength for this theory, ∀N ∈ N, is

ϕ i
µ ≡ ∂µϕ

i, (4.3)

which lets us write the Lagrangian as

L =
cosh γ

2
ϕ i
µ ϕ

µi +
sinh γ
2

√
2
(
ϕ i
µ ϕ

νi
) (
ϕ j
ν ϕµj

)
−
(
ϕ i
µ ϕ

µi
)2
, (4.4)

where the ModMax-like structure is more apparent.

Employing the background field method [15], we split the field ϕi into a classical
field Ci and a quantum field Qi such that

ϕi = Ci +Qi (4.5)
⇒ ϕ i

µ = ∂µ
(
Ci +Qi

)
(4.6)

≡ C i
µ +Q i

µ , (4.7)

where C i
µ is the field strength tensor for the classical field Ci and Q i

µ is the field
strength tensor for the quantum field Qi.

We notice that the analogues of the invariants S and P can thus be decomposed as

S ≡ ϕ i
µ ϕ

µi (4.8)



4.1 Background Field Method 41

= C i
µ C

µi︸ ︷︷ ︸
SC

+2C i
µ Q

µi +Q i
µ Q

µi︸ ︷︷ ︸
SQ

(4.9)

P ≡ ϕ i
µ ϕ

νi (4.10)
= C i

µ C
νi︸ ︷︷ ︸

PC

+Q i
µ C

νi + C i
µ Q

νi +Q i
µ Q

νi︸ ︷︷ ︸
PQ

. (4.11)

Note. In this chapter, we do not assume ∂µC i
µ = 0. Nonetheless, terms linear in

Qi will vanish in the computation of the effective action, as the adjoining classical
fields satisfy the equations of motion [8]. All such terms are labelled topological.

S2 and P 2 can be written as

S2 = S2
C + 2SCC

i
µ Q

µi︸ ︷︷ ︸
topological

+2SCSQ + 4C i
µ Q

µiC j
ν Q

νj + 2SQC
i

µ Q
µi︸ ︷︷ ︸

O(Q3)

+ S2
Q︸︷︷︸

O(Q4)

(4.12)

where neglecting higher order terms we are left with

S2 = S2
C + 2SCC

i
µ Q

µi︸ ︷︷ ︸
topological

+2SCSQ + 4C i
µ Q

µiC j
ν Q

νj (4.13)

P 2 = C i
µ C

µjC i
ν C

νj + 4C i
µ C

µjCνiQ j
ν︸ ︷︷ ︸

topological

+2C i
µ C

νiQ j
ν Q

µj

+ 4Q i
µ C

νiQ j
ν C

µj + 2Q i
µ C

νiC j
ν Q

µj +O
(
Q3
)

(4.14)

Combining these terms, we see that the term underneath the square root is given
by

⇒ 2P 2 − S2 = 2P 2
C − S2

C + 8C i
µ C

µjCνiQ j
ν − 2SCC

i
µ Q

µi︸ ︷︷ ︸
topological

−2SCSQ − 4C i
µ Q

µiC j
ν Q

νj

+ 4C i
µ C

νiQ j
ν Q

µj + 8Q i
µ C

νiQ j
ν C

µj + 4Q i
µ C

νiC j
ν Q

µj. (4.15)

Taylor expanding the square root about the solely background dependent terms
2P 2

C − S2
C we see that

√
2P 2 − S2 ≡

√
2P 2

C − S2
C +Q =

√
2P 2

C − S2
C +

Q

2
√
S2
C + P 2

C

− Q2

8 (S2
C + P 2

C)
3
2

+O
(
Q3
)

(4.16)
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where

Q = 8C i
µ C

µjCνiQ j
ν − 2SCC

i
µ Q

µi︸ ︷︷ ︸
topological

−2SCSQ − 4C i
µ Q

µiC j
ν Q

νj

+ 4C i
µ C

νiQ j
ν Q

µj + 8Q i
µ C

νiQ j
ν C

µj + 4Q i
µ C

νiC j
ν Q

µj (4.17)

and up to terms quadratic in the quantum field we have

Q2 = 4S2
CC

i
µ Q

µiC j
ν Q

νj − 32SCC
i

µ Q
µiC j

ν C
νkCρjQ k

ρ + 64
(
C j

ν C
νkCρjQ k

ρ

)2
+O

(
Q3
)
.

(4.18)

Therefore with the classical field Lagrangian defined by

LC ≡ cosh γ
2

SC +
sinh γ
2

√
2P 2

C − S2
C (4.19)

we can thus write the full Lagrangian as

L = LC +
cosh γ

2
SQ +

sinh γ
2

(
Q

2
√
2P 2

C − S2
C

− Q2

8 (2P 2
C − S2

C)
3
2

)
, (4.20)

The Lagrangian for the quantum field thus suggests the quantum field has a
Maxwell-like propagation SQ cosh γ and an interaction vertex quadratic in both
the classical and quantum fields.

We notice that we can express the quantum Lagrangian in the form

LQ = Qµi

(
cosh γ

2
gµνδ

ij + Pµν
ij

)
Qνj (4.21)

= −Qi

(
cosh γ

2
δij∂2 + sinh γ∂µP ij

µν ∂ν + sinh γP ij
µν ∂µ∂ν

)
Qj (4.22)

where

P ij
µν = −

(−2SCgµνδ
ij − 4C i

µ C
j

ν + 4C k
µ C k

ν δij + 8C j
µ C

i
ν + 4C i

ρ C
ρjgµν

4
√

2P 2
C − S2

C

−
4S2

CC
i

µ C
j

ν − 32SCC
i

µ C
k

ρ C
ρjC k

ν + 64C k
ρ C

ρiC k
µ C m

τ CτjC m
ν

16 (2P 2
C − S2

C)
3
2

)
,

(4.23)

and we consider P ij
µν (x) to be a composite operator representing the cumulative

effect of the classical field.
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4.2 Feynman Rules
The propagator for the quantum field is

Dij =
1

cosh γ
−iδij

k2
. (4.24)

I will draw quantum fields as solid lines and the cumulative effect of the background
fields as a single coiled line.

Reading off the Lagrangian Eq. (4.22), consider first contracting Qi with the
incoming quantum field with momenta p. This means Qj will contract with the
momenta q field. The ∼ QiP ij

µν∂
µ∂νQj term will thus carry qµqν and the ∼

Qi∂µP ij
µν ∂νQj term will contribute rµqν as the first derivative now acts on the

classical field that has momenta r.

Performing this identically for the other possible contraction, we see that the
interaction vertex takes the form

r =− p− q

i, p

j, q

µ, ν; m, n

= i sinh γ
(
δimδjn (qµ + rµ) qν + δinδjm (pµ + rµ) pν

)

(4.25)
= −i sinh γ

(
δimδjnpµqν + δinδjmqµpν

)
. (4.26)

Note that P ij
µν = P ji

νµ and thus as such vertices are always contracted with these
external factors we can simplify this to

= −2i sinh γδimδjnpµqν . (4.27)

4.3 Background-Varying One-Loop Diagrams
As the Feynman rules are entirely analogous to the 4D ModMax case, solely with
the addition of indices i, j ∈ {1, · · · , N} that sum over bosons, we can conclude
immediately that if the background field is held constant, then the one loop effective
action will vanish. As such, we move to the more general case, in which we do not
impose, ∂µC i

ν = 0, thus allowing the background field to arbitrarily vary.
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The first diagram in the perturbative expansion is

`

p

µ, ν;m, n

= sinh γδimδjn
∫

dd`

(2π)d
(2i`µ`ν)Dij (4.28)

where the replacement `µ`ν → `2

4
gµν and the propagator derived above yield

= −tanh γ
2

δimδin
∫

dd`

(2π)d
gµν . (4.29)

This integral vanishes in dimensional regularization.

The first nontrivial diagram leads to a divergent contribution with d = 2 + 2ε
analogous to the ModMax case with

q

`; k

`+ q; l

qµν; ij ρτ ;mn
=

(
1

ε

)
−i

24 (4π)

[

q2 (gµνgρτ + gµρgντ + gµτgνρ)

+ 2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+ 4 (gµρqνqτ + gντqµqρ)

]
+ symmetrized indices.

For the full dimensional regularization calculation of this diagram see Appendix B.

Note. The factored complete symmetrization means that all combinations of
indices will appear. This leads to the latter two terms being unified as they are
identical under index exchange. This leads to a coefficient of 2 + 4 = 6.

Further, all such expressions should be bookended by∫
ddq

(2π)d
Pµν

ij (−q)P ij
ρτ (q) , (4.30)
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corresponding to the external classical fields. This prefactor which contracts the
remaining free indices above is omitted above and in the calculation for brevity.

However, transforming back to real space we see that we can express the result as

=

(
1

ε

)
−i

24 (4π)

∫
d2xP ij

µν (x)
[
g(µνgρτ)∂2 + 6g(ρτ∂µ∂ν)

]
P ij
ρτ (x) . (4.31)

This bears close resemblance to the familiar gµν∂2−∂µ∂ν operator with the addition
of a constant and index symmetrization.

However, there is no such
(
P ij
µν

)2 term in the original Lagrangian, which bodes
poorly for renormalization. Namely, as 1

ε
diverges in the limit ε → 0, to obtain

finite predictions from this theory, one would introduce a counter term to the
Lagrangian, which removes this divergence. When the corrections are of the form
of the original Lagrangian, this is physically well motivated as it corresponds to a
redefinition of constants in the Lagrangian. However, as the form of this correction
is not present in the original Lagrangian, this interpretation does not apply as the
corrections are novel.

Nonetheless, I have obtained the one-loop effective action up to order O (γ2).
Truncating at an arbitrary order in γ is well motivated due to the small experi-
mental bound of γ ≤ 3 × 10−22, however for completeness we proceed with the
generalization of the argument developed to an n-vertex diagram.

4.4 n Vertex Diagram
With the two-vertex diagram evaluated, to complete the one-loop effective action,
we seek to evaluate all remaining diagrams containing one loop. Fortunately, there
is only one diagram constructible for each number of vertices n. As such, we
proceed with the generalization of the above method.

Observe that in general [8, 16], we can write the product of n propagators as
n−1∏
i=0

A−1
i =

∫ 1

0

(
n−1∏
i=0

dxi

)
δ

(
n−1∑
i=0

xi − 1

)
(n− 1)!

[
∑

i xiAi]
n . (4.32)

For an n vertex diagram, we label the external momenta as qi for i ∈ (0, n− 1) with
momentum conservation implying qn−1 = −

∑n−2
i=0 qi. The product of propagators

inside the loop can thus be expressed as

(−i)N

coshN γ

n−1∏
i=0

(
`+

i∑
j=1

qj

)−2
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=
(−i)N (n− 1)!

coshN γ

∫ 1

0

(
n−1∏
i=0

dxi

)
δ

(
n−1∑
i=0

xi − 1

)∑
i

xi

(
`+

i∑
j=1

qj

)2
−n

(4.33)

where as
∑

i xi = 1, we can expand and reduce the square bracketed term to∑
i

xi

(
`+

i∑
j=1

qj

)2
−n

=

`2 +∑
i

xi

2`µ

i∑
j=1

qµj +

(
i∑

j=1

qj

)2
−n

(4.34)

which we can equivalently write as

=

(`+∑
i

i∑
j=1

xiqj

)2

−

(∑
i

i∑
j=1

xiqj

)2

+
∑
i

xi

(
i∑

j=1

qj

)2
−n

(4.35)

which under the translation `→ `−
∑

i

∑i
j=1 xiqj becomes

=

`2 −(∑
i

i∑
j=1

xiqj

)2

+
∑
i

xi

(
i∑

j=1

qj

)2
−n

(4.36)

=
[
`2 −∆2

]−n (4.37)

where we identify

∆2 =

(∑
i

i∑
j=1

xiqj

)2

−
∑
i

xi

(
i∑

j=1

qj

)2

. (4.38)

The vertex factor yields factors of momenta in the numerator. As each external
vertex around the loop adds qj, and the vertex factor is the product of the momenta
entering and leaving the vertex, in total we will have

(−i sinh γ)N
n−1∏
k=0

(
`+

k∑
j=1

qj

)α2k
(
`+

k∑
j=1

qj

)α2k+1

(4.39)

where the k = 0 term gives us the ` terms (and we ignore the sinhN γ prefactor
for now). Under the translation identified for the denominator to be quadratic in
`, this numerator is translated to

−→
n−1∏
k=0

(
`−

n−1∑
i=0

i∑
j=1

xiqj +
k∑

j=1

qj

)α2k
(
`−

n−1∑
i=0

i∑
j=1

xiqj +
k∑

j=1

qj

)α2k+1

. (4.40)
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We expand this product in descending powers of ` as only powers `2n and `2n−2

will lead to divergent terms. We have that

=
n−1∏
k=0

`α2k`α2k+1 +
2n−1∑
a=0

2n−1∑
b>a

(
2n−1∏
c 6=a,b

`αc

)
f (x, q, a)αa f (x, q, b)αb +O

(
`2n−4

)
,

(4.41)

where we have defined for brevity

f (x, q, a)αa ≡

(
n−1∑
i=0

i∑
j=1

xiqj +
a∑

j=1

qj

)αa

. (4.42)

Using the generalized symmetrization rule derived in Eq. (3.45)
n∏

i=1

`µi → `n (d− 2)!!

2
n
2 (d+ n− 2)!!

g(µ1µ2 · · · gµn−1µn) (4.43)

where n!! = n (n− 2) (n− 4) · · · 1 is the double factorial. This notation is cumber-
some so we also write

n∏
i=1

`µi → `n (d− 2)!!

2
n
2 (d+ n− 2)!!

⊗
(µi)

g. (4.44)

This transforms the numerator to

=
`2n (d− 2)!!

2n (d+ 2n− 2)!!

⊗
(µi)

g

+
`2n−2 (d− 2)!!

2n−1 (d+ 2n− 4)!!

2n−1∑
a=0

2n−1∑
b>a

 ⊗
(αc 6=αa,αb)

g

 f (x, q, a)αa f (x, q, b)αb . (4.45)

Therefore, with the known integral∫
dd`

(2π)d
`2β

(`2 −∆2)α
= i (−1)α+β Γ

(
β + d

2

)
Γ
(
α− β − d

2

)
(4π)

d
2 Γ (α) Γ

(
d
2

) ∆
2
(

d
2
−α+β

)
, (4.46)

we see that these two numerator terms have β = n and β = n − 1 respectively.
The denominator yields α = n. From this form it is clear to see that `2n−4 terms
and lower powers of ` are finite as d→ 2.
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Proof. Such terms have β = n− 2 which would contain Γ
(
α− β − d

2

)
terms

of the form

Γ

(
(n)− (n− 2)− d

2

)
= Γ

(
2− d

2

)
(4.47)

=

(
1− d

2

)
Γ

(
1− d

2

)
(4.48)

=

(
1− d

2

)(
−d
2

)
Γ

(
−d
2

)
(4.49)

which using d = 2 + 2ε and the pole expansion of the Γ function we see that

= − (−ε) (1 + ε)

(
−1

ε
− γ + 1

)
(4.50)

= (1 + ε) (−1− εγ + ε) (4.51)
= −1 +O (ε) , (4.52)

which are finite and thus discarded. Lower powers of ` lead to larger α−β− d
2

values which still contain the 1− d
2
→ −ε factor which cancels the poles.

We consider only the divergent terms arising from these diagrams as they deter-
mine the observable behaviour of the theory. Finite terms can be absorbed when
performing a renormalization of the theory.

As such focusing on the divergent terms, we have that the `2n term with β = n
becomes

C2n ≡ i (d− 2)!!

2n (d+ 2n− 2)!!

⊗
(αk)

g

 Γ
(
n+ d

2

)
(4π)

d
2 Γ (n) Γ

(
d
2

)Γ(−d2
)
∆

2
(

d
2

)
, (4.53)

and the `2n−2 term has β = n− 1 and becomes

C2n−2 ≡
i (d− 2)!!

2n−1 (d+ 2n− 4)!!

2n−1∑
a=0

2n−1∑
b>a

 ⊗
(αc 6=αa,αb)

g

 f (x, q, a)αa f (x, q, b)αb

(4.54)

×
Γ
(
n− 1 + d

2

)
(4π)

d
2 Γ (n) Γ

(
d
2

)Γ(1− d

2

)
∆

2
(

d
2
−1

)
, (4.55)
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where we can quote the whole n vertex diagram with

(−2)N

N
tanhN γ (n− 1)!

∫ 1

0

(
n−1∏
i=0

dxi

)
δ

(
n−1∑
i=0

xi − 1

)
[C2n + C2n−2] , (4.56)

with the exception of the prefactor indices in the vertex factor.

In both C2n and C2n−2 we have a polynomial in xi of order d and a total power of
qd. In C2n, this qd momentum dependence is contained within ∆d, and for C2n−2,
we have two uncontracted factors qαa and qαb on top of the qd−2. Therefore, we
conclude that in the limit of d → 2, all such n vertex diagrams have the same
general structure as the 2 vertex diagram with

C2n ∝ q2

⊗
(αk)

g

 (4.57)

C2n−2 ∝
2n−1∑
a=0

2n−1∑
b>a

qαaqαb

 ⊗
(αk 6=αa,αb)

g

 , (4.58)

a familiar (q2gµν − qµqν)-like dependence. This structure is shrouded in the index
symmetrization and xi dependence in the full expression. As expected, while this
momentum dependence is familiar, the classical field dependence that arises from
the external vertices is not present in the original Lagrangian. As each n vertex
diagram is divergent and has a different external field dependence (i.e. an extra
external field P ij

µν (x)), one would need to add an infinite number of terms to the
Lagrangian to subtract each of these divergences. This property of requiring an
infinite number of quantities to be fixed to obtain finite results is referred to as
non-renormalizability. Such a theory is necessarily unphysical and unverifiable as
it would require an infinite number of measurements to verify.

Nonetheless, ModMax and it’s two dimensional analogue can still be considered
on the quantum domain as effective field theories where one necessarily identifies
a maximum energy scale of applicability. We call such a theory effective, as it is a
valid low energy description, but not the true fundamental theory of the system.
For example, fermions have mass in the standard model, but this is in fact an
effective low energy description where the Higgs interaction which generates such
mass terms has been integrated out [8].

As such, we notice that all such n vertex diagrams are proportional to tanhn γ ∼ γn.
Motivated by the small experimental bound on γ, we seek to characterize all
diagrams contributing up to order O (γ2), which is exactly all two vertex diagrams.
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4.5 Two Vertex n-loop Diagrams
If we want to truncate at order γ2, which corresponds to two vertices, unfortunately
there is still an infinite family of diagrams that satisfy this constraint. Namely, in
the expansion of the square root, we have√

2P 2
C − S2

C +Q =
∞∑
n=0

(
1
2

n

)
Qn

(2P 2
C − S2

C)
n− 1

2

, (4.59)

where Q can contain up to quartic terms in the quantum field Qi. As such we
absorb the complexities of this expansion into an object, P which captures all
combinations that lead to n Qi’s in a given term with√

2P 2
C − S2

C +Q =
∞∑
n=0

Pαi···αn
µ1···µn

n∏
i=1

∂µiQαi
, (4.60)

from this expression, we read off the Feynman rules, treating Pαi···αn
µ1···µn

as a
composite object representing the entire effect of the classical field (as it contains
only classical fields and derivatives). As such we find that this n-vertex has
Feynman rule

q =− Σip
µi

α1, pµ1 αn, pµn

β1, · · · ,βn; ν1, · · · ,νn

n

· · ·
=

∫
ddq P βi···βn

ν1···νn (q)
n∏

i=1

pνi . (4.61)

Therefore, we get the two vertex n loop diagram

qq

n

...

...
=

sinh2 γ

coshn γ

∫
ddq

(
n∏

i=1

dd`i

)
×

P βi···βn
ν1···νn (q)

(
n∏

i=1

pνii p
τi
i

p2i

)
P βi···βn

τi···τn (−q) ,

(4.62)

where p1 = q − `1, pi = `i−1 − `i for 1 < i < n and pn = −`n−1 such that
n∑

i=1

pi = q. (4.63)
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Note. Diagrams where a loop begins and ends on the same vertex do not contribute,
as they vanish in dimensional regularization. We can see this as the momentum
circulating around such a loop, `, will appear multiplicatively in the vertex factor
in the form `µ`ν , and in the propagator in the form 1

`2
. Factoring this dependence,

we see the familiar ∫
dd`

(2π)d
`µ`ν

`2
=
gµν

d

∫
dd`

(2π)d
1, (4.64)

which we have seen vanishes with dimensional regularization in the limit d→ 2, as
desired.

Notice that this is an n−1 loop diagram hence the `i loop momenta for 1 ≤ i ≤ n−1.
Ignoring external momenta factors, we can write the loop integrals as

∝
∫ n−1∏

i=1

dd`i
pνii p

τi
i

p2i
. (4.65)

Evaluating each loop integral in succession, beginning with `n−1 we see (in Ap-
pendix C), that we obtain a divergence of the form

∝ Γ

(
−d
2

)
`dn−2. (4.66)

Therefore applying this argument recursively, each successive loop integral gains
an additional `di factor, resulting after all n− 1 integrals, in an external momenta
q dependence of

∝ Γ

(
−d
2

)n−1

qd(n−1). (4.67)

However, as each integral yields 6 different symmetrizations of the external indices,
the exact form of an n loop diagram contains 6n different symmetrizations and is
thus challenging to write explicitly in a general form. Regardless, we can comment
on the structure of the divergences present, as they are the central object of interest.

While proceeding in dimensional regularization facilitated the characterization of
the divergence, it is useful to quote the dependence of such divergences on an
external characteristic momenta scale, Λ. Namely, one can show that the presence
of a 1

ε
divergence in dimensional regularization is equivalent to a logarithmic

divergence of the form

1

ε
∼ log (Λ) . (4.68)
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Therefore, as each n loop diagram leads to a divergence of the form Γ
(
−d

2

)n, we
observe logarithmic divergences of the form(

1

ε

)n

q2n ∼
(
q2 log (Λ)

)n
. (4.69)

This is a different structure of divergence for each vertex as observed for the 1
loop n vertex diagrams. However, if a pattern is hidden within these series of
divergences which allows one to recover a finite number of terms by summing the
series, then the theory would be more amenable to renormalization. While the
background field method has proved effective in obtaining these divergences, any
possible pattern is obscured by the complex index symmetrization arising from the
Feynman rules in this scheme. Thus, having successfully characterized the effective
action and it’s divergences, we look towards an alternative quantization approach,
and evaluate the possibly of hidden structures.



5
Auxiliary Fields

In our approach so far to quantizing ModMax, we have relied heavily on the
background field method formalism. The background field method is powerful and
effective in that we are able to consider various additional constraints on the theory
such as constant classical field strength with ease. It similarly is compatible with
the Taylor expansion of the square root present in ModMax and facilitates the
truncation at second order in the quantum field. However, as I have demonstrated
in my analysis, expanding order by order quickly becomes unfeasible.

In tackling the nonlinearity present in ModMax, the only other approach is the
introduction of auxiliary fields. Such fields are not physical, but rather are defined
in terms of the physical fields to capture some aspect of the nonlinearity. When one
considers auxiliary fields, it is simple to show that such an alternative representation
of the theory is equivalent to the original at the classical level. However, equivalence
at the quantum level is highly nontrivial as any number of classical symmetries
may be broken in either the auxiliary or original theory.

We introduce the method of auxiliary fields in the context of describing a relativis-
tic point particle. We then outline an auxiliary field representation of ModMax,
and detail the quantum behaviour of this theory. We find that this alternative
approach alleviates the need for a Taylor expansion of the square root, but ne-
cessitates explicitly breaking Lorentz symmetry to proceed in the quantization.
This approach is not the focus of this thesis, but is included to demonstrate the

53
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comparative effectiveness of the background field method.

5.1 Relativistic Point Particle Action
Contrary to the field theory used throughout this thesis, we now consider the action
of a relativistic point particle described by a position vector xµ = (t, ~x). Such an
action should extremize the proper time between events. It can be shown that the
choice

S = −m
∫

Worldline
dl , (5.1)

achieves this, where m is the mass of the particle and dl is the proper time between
two infinitesimally separated events xµ and xµ + dxµ.

Definition 6: A particle’s worldline Xµ is a timelike path in spacetime which
the particle follows.

x

t Xµ (τ)

Figure 5.1: A worldline Xµ (τ) parametrized by a variable τ . Notice that it
is a timelike curve as it is above the null-like diagonal line.

In Minkowski space, we have that

dl2 = −ηµν dxµ dxν (5.2)
= dt2 − d~x2 (5.3)

which with the parametrization ~x (t), we can write as

= dt2 −
(

d~x
dt

)2

dt2 (5.4)
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= dt2
(
1−

(
d~x
dt

)2
)

(5.5)

dl = dt

√
1−

(
d~x
dt

)2

(5.6)

where we define v2 =
(

dx
dt

)2

yielding

dl = dt
√
1− v2. (5.7)

This allows us to write the action as

S = −m
∫

Worldline
dt

√
1− v2. (5.8)

However, this action is not clearly Lorentz invariant as we desire for a relativistic
point particle. Rather than parametrizing our particle’s worldline by a time t, we
consider the worldline to be parameterized by a variable τ . Thus we can write the
worldline of the particle as Xµ (τ). Therefore on the worldline we can write

dXµ =
dXµ

dτ
dτ , (5.9)

which leads to

dl2 = −ηµν dXµ dXν (5.10)

= −ηµν
dXµ

dτ
dXν

dτ
dτ 2 (5.11)

dl = dτ
√

−ηµν
dXµ

dτ
dXν

dτ
, (5.12)

which we can insert into the action to obtain

S = −m
∫

dτ
√

−ηµν
dXµ

dτ
dXν

dτ
. (5.13)

This is manifestly Lorentz invariant. This form of the action is nonlinear however,
and defies traditional quantization techniques in the same fashion as ModMax.
Therefore, we consider a representation in terms of the auxiliary field e (τ) referred
to as the Einbein action,

S =
1

2

∫
dτ
(
e (τ)−1 ηµν

dXµ

dτ
dXν

dτ
− e (τ)m2

)
. (5.14)
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For nonzero mass m, the equation of motion for e (τ) is

∂L
∂e

= 0 (5.15)

⇒ e (τ) =
1

m

√
−ηµν

∂Xµ

∂τ

∂Xν

∂τ
, (5.16)

which when reinserted into the Einbein action Eq. (5.14) recovers the manifestly
Lorentz invariant action in Eq. (5.13). This implies the theories are classically
equivalent, but makes no predictions about their equivalence after quantization.

Note. All such actions are invariant under Lorentz transformations, translations
and spatial rotations, as well as reparametrization of τ → τ̃ . While under a
reparametrization of τ → τ̃ , Xµ (τ) transforms to X̃µ (τ̃), the auxiliary field e (τ)
transforms as a density such that

ẽ (τ̃) =

(
dτ̃
dτ

)−1

e (τ) . (5.17)

Therefore, if we view this invariance as a gauge symmetry [22], then picking a
fixed value of e (τ) corresponds to fixing a gauge. Choosing e (τ) = 1, the action
becomes

S =
1

2

∫
dτ ηµν

dXµ

dτ
dXν

dτ
−m2, (5.18)

where the equation of motion for e (τ) can no longer be imposed, but instead
becomes a constraint equation

1 = e (τ) = − 1

m
ηµν

dXµ

dτ
dXν

dτ
(5.19)

⇒ −m2 = ηµν
dXµ

dτ
dXν

dτ
, (5.20)

which with the identification of momenta pµ = ∂Xµ

∂τ
, can be written as

p2 = −m2, (5.21)

the familiar mass-shell condition. This form of the action is much more approach-
able when considering the quantization of the theory, with the only difficulty arising
in imposing the constraint.
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5.2 Auxiliary ModMax
We seek to apply this approach of introducing auxiliary fields, and then removing
them by imposing their equation of motion as a constraint instead.

The ModMax Lagrangian has an auxiliary field representation of

L = cosh γS + sinh γ (Sϕ1 + Pϕ2)−
1

2
ρ2
(
ϕ2
1 + ϕ2

2 − 1
)
, (5.22)

which has equations of motion for the scalar fields,

sinh γS = ρ2ϕ1 sinh γP = ρ2ϕ2 ρ
(
ϕ2
1 + ϕ2

2 − 1
)
= 0, (5.23)

S =
ρ2ϕ1

sinh γ
P =

ρ2ϕ2

sinh γ
. (5.24)

Notice that if ρ = 0, then ϕ1 and ϕ2 are unconstrained and the equations of motion
yield S = P = 0, corresponding to E = B = 0. The Lagrangian then reduces to
the well studied but unphysical Bialynicki-Birula theory [5].

For finite ρ, substituting the equations of motion for ϕ1 and ϕ2 back into the
Lagrangian, we can obtain

L = cosh γS +
sinh2 γ

2
ρ−2

(
S2 + P 2

)
+

1

2
ρ2, (5.25)

which has equation of motion for ρ

ρ4 = sinh2 γ
(
S2 + P 2

)
. (5.26)

Note. Contrary to the relativistic point particle, this action does not have reparametriza-
tion invariance. Therefore, to remove the auxiliary fields we must make use of the
gauge symmetry already present. However, as S and P are gauge invariants, one
does not have freedom to fix the gauge to impose the equation of motion for ρ.
Nonetheless, we notice that our Lagrangian is not a function of ∂0A0 as

S = −1

2
(∂µAν∂

µAν − ∂µAν∂
νAµ) (5.27)

= −1

2

(
∂0Ai∂

0Ai + ∂jAi∂
jAi + ∂iA0∂

iA0 − ∂0Ai∂
iA0 − ∂jAi∂

iAj − ∂iA0∂
tAi
)

(5.28)

and

P = EiBi = − (∂0Ai − ∂iA0) ε
ijk∂jAk, (5.29)
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are functions of A0 but not ∂0A0. Therefore, the canonical conjugate momenta

Π0 =
∂L

∂ (∂0A0)
= 0, (5.30)

vanishes, suggesting A0 is an ill suited canonical variable. For QED, this is iden-
tically, the case, and can be treated by introducing Coulomb gauge, in which one
fixes A0 = 0, treating it as a non-dynamical variable.

We posit that there exists a generalized Coulomb gauge, fixing A0 = ω (x) for some
scalar function ω (x) such that we have the constraint

sinh2 γ
(
S2 + P 2

)
= 1, (5.31)

namely, that ρ = 1 becomes fixed and non-dynamical as well. Fixing A0 in this
fashion explicitly breaks Lorentz symmetry.

Thus, imposing the resulting constraint on the Lagrangian

L = cosh γS +
sinh2 γ

2

(
S2 + P 2

)
+

1

2
, (5.32)

is a classically equivalent form of ModMax. This constraint appears quite abstract,
and unintuitive in comparison to the p2 = −m2 constraint that we saw for the
Einbein action.

5.3 Symmetry Preservation
As ModMax has EM-duality at the level of the equations of motion, so should this
equivalent formalism. Namely, in general, electromagnetic duality is expressed as(

−2∂L(F ′)
∂F ′

µν

F̃ ′
µν

)
=

(
cosα sinα
− sinα cosα

)(−2∂L(F ′)
∂F ′

µν

F̃µν

)
, (5.33)

where

Gµν ≡ −2
∂L
∂Fµν

= cosh γF µν + ρ−2 sinh2 γ
(
SF µν + PF̃ µν

)
. (5.34)

An equivalent statement of electromagnetic duality [7] is if the theory satisfies

GµνG̃
µν = FµνF̃

µν . (5.35)
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Note. We have

G̃µν = cosh γF̃ µν + ρ−2 sinh2 γ
(
SF̃ µν − PF µν

)
, (5.36)

which reveals that

GµνG̃
µν = cosh2 γFµνF̃

µν + ρ−2 cosh γ sinh2 γ×[
F̃µν

(
SF µν + PF̃ µν

)
+ Fµν

(
SF̃ µν − PF µν

)]
+ ρ−4 sinh4 γ

(
SFµν + PF̃µν

)(
SF̃ µν − PF µν

)
(5.37)

= −4 cosh2 γP − 4ρ−2 cosh γ sinh2 γ [2SP − 2SP ]

+ 4ρ−4 sinh4 γ
[
−S2P + S2P + S2P + P 3

]
(5.38)

= −4 cosh2 γP + 4ρ−4 sinh4 γP
[
S2 + P 2

]
(5.39)

where if we impose the equation of motion for ρ,

= −4 cosh2 γP + 4 sinh4 γP

[
1

sinh2 γ

]
(5.40)

= 4
(
sinh2 γ − cosh2 γ

)
P (5.41)

where the hyperbolic identity sinh2 γ − cosh2 γ = −1 provides

= −4P (5.42)

and as we have

FµνF̃
µν = −4P (5.43)

⇒ GµνG̃
µν = FµνF̃

µν , (5.44)

this theory is electromagnetically dual when the constraint is imposed as expected.

The stress energy tensor is given by

Tµν = −2

(
∂L
∂S

∂S

∂gµν
+
∂L
∂P

∂P

∂gµν

)
+ gµνL, (5.45)

where
∂L
∂S

= cosh γ + ρ−2 sinh2 γS
∂L
∂P

= ρ−2 sinh2 γP (5.46)

and
∂S

∂gµν
= −1

2
F ρ
µ Fνρ

∂P

∂gµν
= −1

4

(
F ρ
µ F̃µρ + F ρ

ν F̃µρ

)
, (5.47)
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which lead to a trace of the form

T µ
µ = −4

(
S
∂L
∂S

+ P
∂L
∂P

− L
)

(5.48)

= −4

(
S cosh γ + ρ−2S2 sinh2 γ + ρ−2P 2 sinh2 γ − S cosh γ

− ρ−2 sinh2 γ

2

(
S2 + P 2

)
− 1

2
ρ2
)

(5.49)

= −4

(
ρ−2 sinh2 γ

2

(
S2 + P 2

)
− 1

2
ρ2
)

(5.50)

where we see the equation of motion Eq. (5.26) causes this term to exactly vanish

T µ
µ = 0, (5.51)

as desired.

Therefore, we have that this auxiliary field representation of ModMax maintains
both the symmetries of the original theory at the classical level. Note that this
makes no comment on the equivalence at the quantum level, which is significantly
inhibited by the breaking of Lorentz symmetry by fixing A0. This digression sug-
gests that one cannot integrate out ρ without explicitly breaking Lorentz symmetry
(or purely recovering ModMax itself). This contrasts with the effectiveness of the
background field method, in which we were able to preserve Lorentz invariance
in our quantization procedure. Alternative auxiliary field representations are a
natural extension of this work, however are likely less elucidating of underlying
structures than the background field method developed above.



6
Conclusion

The central aim of this project was to quantize ModMax by obtaining the effective
action. While ModMax’s nonlinearity poses a great resistance to traditional quan-
tization techniques, the background field method and dimensional regularization
proved highly effective in quantizing this theory. As such, I achieved the central
aim of this project by characterizing the effective action arising from quantum
corrections in both a static and varying classical background field. I obtained the
effective action by evaluating all one loop Feynman diagrams and all two loop
diagrams containing up to two vertices.

This effective action provides corrections to the classical theory arising from the
quantum domain. I showed that these corrections exactly vanish when the back-
ground field is static. This suggests that under this restriction, there are no
quantum corrections to this theory, a novel result undiscovered in literature. How-
ever, when the background field was allowed to vary, divergent corrections arose
which were not of the form of the original Lagrangian. This was also a novel result.
While these corrections appear to respect conformal symmetry, as ModMax is
the unique nonlinear theory possessing conformal symmetry and electromagnetic
duality, this suggests that these corrections must break electromagnetic duality.
While this result hints towards the non-physicality of ModMax, it is still a valid
effective field theory. Further, the discovery of novel conformal field theories is
of great theoretical interest. The natural extension of this investigation would be
to investigate the properties of the classical conformal theory generated by these
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quantum corrections.

This result motivated the study of the two dimensional analogue of ModMax,
due to the increased predictive power of conformal symmetry in two dimensions.
I applied the method I developed to quantize ModMax to it’s two dimensional
analogue theory. As expected, I obtained corrections of an analogous form, also
vanishing when the background field is held constant. Allowing the background
to vary, I similarly obtained divergent quantum corrections to the classical theory
that are not of the form of the initial Lagrangian.

For both of the theories investigated, while the quantum corrections obtained were
novel results, the divergence and new form of these corrections suggest that the
theories do not admit physical quantum versions in their current form. Nonetheless,
they are valid as effective field theories, and the possibility of generating new
conformal field theories through the corrections obtained is promising. In the
landscape of nonlinear electrodynamics, this quantization of ModMax serves to
demonstrate the possibility of translating such classical nonlinear theories to the
quantum domain.



A
Nontrivial 2-Loop Diagram

We proceed in dimensional regularization with d 6= 4 in which the diagram thus
evaluates to

p

p− q

q
=

sinh2 γ

6
Bµ1 ρ1 α1

ν1 τ1 β1
Bµ2 ρ2 α2

ν2 τ2 β2
×

∫
ddp ddq

(2π)2d
pµ1qρ1 (p− q)α1

pµ2qρ2 (p− q)α2
Dν1ν2Dτ1τ2Dβ1β2

(A.1)

= (−i)3 sinh2 γ

6 cosh3 γ
Bµ1 ρ1 α1

ν1 τ1 β1
Bµ2ν1ρ2τ1α2β1× (A.2)∫

ddp ddq

(2π)2d
pµ1qρ1 (p− q)α1

pµ2qρ2 (p− q)α2

p2q2 (p− q)2
. (A.3)

The numerator has terms with either 2, 3 or 4 factors of p in it (and symmetrically
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for q). Inspecting the pµ1pµ2 term of the integral, we have∫
ddp ddq

(2π)2d
pµ1pµ2qρ1qρ2qα1qα2

p2q2 (p2 − 2pµqµ + q2)
(A.4)

where focusing on the p integral, we write

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d
pµ1pµ2

p2 (p2 − 2pµqµ + q2)
(A.5)

and introduce a Feynman integral over x

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d

∫ 1

0

dx pµ1pµ2

[p2x+ (p2 − 2pµqµ + q2) (1− x)]2
(A.6)

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d

∫ 1

0

dx pµ1pµ2

[p2 + (−2pµqµ + q2) (1− x)]2
(A.7)

where we complete the square in the denominator

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d

∫ 1

0

dx pµ1pµ2[
(pµ − qµ (1− x))2 − q2 (1− x)2

]2 (A.8)

and make the translation pµ → pµ + qµ (1− x),

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d

∫ 1

0

dx (pµ1 + qµ1 (1− x)) (pµ2 + qµ2 (1− x))[
p2 − q2 (1− x)2

]2
(A.9)

where here the cross terms in the integrand with one p will vanish, and thus we
are left with

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d

∫ 1

0

dx pµ1pµ2 + qµ1qµ2 (1− x)2[
p2 − q2 (1− x)2

]2 (A.10)

where we make use of the known integral (A.4 in [16])∫
ddp

(2π)d
p2β

(p2 −∆2)α
= i (−1)α+β Γ

(
β + d

2

)
Γ
(
α− β − d

2

)
(4π)

d
2 Γ (α) Γ

(
d
2

) ∆
2
(

d
2
−α+β

)
(A.11)

with α = 2, β = 0, 1 from pµ1pµ2 → p2

4
gµ1µ2 and ∆2 = q2 (1− x)2 to obtain

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫ 1

0

dx i
[
qµ1qµ2 (1− x)2

Γ
(
d
2

)
Γ
(
2− d

2

)
(4π)

d
2 Γ
(
d
2

) ∆d−4
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− gµ1µ2

4

Γ
(
1 + d

2

)
Γ
(
1− d

2

)
(4π)

d
2 Γ
(
d
2

) ∆d−2

]
(A.12)

where substituting in ∆2 and using Γ (x+ 1) = xΓ (x) ⇒ Γ
(
1 + d

2

)
= d

2
Γ
(
d
2

)
leads

to

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫ 1

0

dx i

(4π)
d
2

[
qµ1qµ2q

d−4 (1− x)2+d−4 Γ

(
2− d

2

)
− d

2

gµ1µ2

4
Γ

(
1− d

2

)
qd−2 (1− x)d−2

]
(A.13)

where evaluating the Feynman integral gives 1
d−1

and thus

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2
i

(4π)
d
2 (d− 1)

[
qµ1qµ2q

d−4Γ

(
2− d

2

)
− dgµ1µ2

8
Γ

(
1− d

2

)
qd−2

]
(A.14)

where lastly with Γ
(
2− d

2

)
=
(
1− d

2

)
Γ
(
1− d

2

)
we arrive at

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2
iΓ
(
1− d

2

)
(4π)

d
2 (d− 1)

[
qµ1qµ2q

d−4

(
1− d

2

)
− dgµ1µ2

8
qd−2

]
,

(A.15)

where ∀d 6= 4, we are left with a symmetrizable integral over q that will vanish
identically. By analytic continuation, in this regularization scheme we conclude
that the integrals also vanish at d = 4.

The other two possible numerators with 3 and 4 factors of p follow similarly as the
Feynman integral substitution in the denominator is independent of the momenta
in the numerator. Namely, for 3 factors of p, we have∫

ddp ddq

(2π)2d
pµ1pµ2pα1qρ1qρ2qα2

p2q2 (p2 − 2pµqµ)
+ α1 ↔ α2. (A.16)

Focusing on the p integral, the same process and translation pµ → pµ + xqµ yields

=

∫
ddq

(2π)d
qρ1qρ2qα2

q2

∫
ddp

(2π)d
(pµ1 + xqµ1) (pµ2 + xqµ2) (pα1 + xqα1)

[p2 − q2x2]2
(A.17)

=

∫
ddq

(2π)d
qρ1qρ2qα1qα2

q2

∫
ddp

(2π)d
pµ1pµ2 + x2qµ1qµ2

[p2 − q2x2]2
, (A.18)

which is in fact exactly as we saw for the 4 factors of p case. Likewise by symmetry,
the 2 factors will be identical to the 4 factors under exchange of p↔ q. Thus it is
sufficient to multiply our result by 3 to account for all terms.





B
Scalar Field Nontrivial Diagram

The first nontrivial diagram is

q

`; k

`+ q; l

qµν; ij ρτ ;mn

=
tanh2 γ

2

∫
dd`

(2π)d
1

`2 (`+ q)2
×(

δikδjl`µ (`+ q)ν + δilδjk (`+ q)µ `ν
)(

δkmδln`ρ (`+ q)τ + δknδlm (`+ q)ρ `τ
)

(B.1)

=
tanh2 γ

2

∫
dd`

(2π)d
1

`2 (`+ q)2
×(

δimδjn ((`+ q)ν`µ(`+ q)τ`ρ + (`+ q)µ `ν (`+ q)ρ `τ )

+ δinδjm ((`+ q)ν`µ(`+ q)ρ`τ + (`+ q)µ `ν`ρ (`+ q)τ )

)
(B.2)
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Denoting index exchange by {ρ↔ τ}, allows us to write this as

= tanh2 γ
(
δimδjn + δinδjm{ρ↔ τ}

)
(1 + {µ, ρ↔ ν, τ})∫

dd`

(2π)d
(`+ q)ν`µ(`+ q)τ`ρ

`2 (`+ q)2
(B.3)

Ignoring the prefactor and index exchange for now, we are left with an integral
that expands to ∫

dd`

(2π)d
`ν`µ`τ`ρ + `ν`µqτ`ρ + qν`µ`τ`ρ + qν`µqτ`ρ

`2 (`+ q)2
(B.4)

where introducing a Feynman integral for the denominator we see that

=

∫
dd`

(2π)d

∫ 1

0

dx `
ν`µ`τ`ρ + `ν`µqτ`ρ + qν`µ`τ`ρ + qν`µqτ`ρ[

`2 (1− x) + x (`+ q)2
]2

(B.5)

=

∫
dd`

(2π)d

∫ 1

0

dx `
ν`µ`τ`ρ + `ν`µqτ`ρ + qν`µ`τ`ρ + qν`µqτ`ρ

[`2 + x (2`µqµ + q2)]2

(B.6)

Completing the square by adding and subtracting q2x2 we see that we can factor

=

∫
dd`

(2π)d

∫ 1

0

dx `
ν`µ`τ`ρ + `ν`µqτ`ρ + qν`µ`τ`ρ + qν`µqτ`ρ[

(`µ + xqµ)2 + x (1− x) q2
]2

(B.7)

and translating `µ → `µ−xqµ, as the denominator becomes even in `, odd numerator
terms vanish leaving

=

∫
dd`

(2π)d

∫ 1

0

dx `ν`µ`τ`ρ

[`2 + q2x (1− x)]2
+

[x2] `νqµ`τqρ

[`2 + q2x (1− x)]2

+
[x2 − x] (qνqµ`τ`ρ + qν`µ`τqρ + `ν`µqτqρ + `νqµqτ`ρ)

[`2 + q2x (1− x)]2

+
[x2 − 2x+ 1] qν`µqτ`ρ

[`2 + q2x (1− x)]2
+

[x4 − 2x3 + x2] qνqµqτqρ

[`2 + q2x (1− x)]2

(B.8)

where we can factor the polynomials into

=

∫
dd`

(2π)d

∫ 1

0

dx `ν`µ`τ`ρ

[`2 + q2x (1− x)]2
+

[x2] `νqµ`τqρ

[`2 + q2x (1− x)]2
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+
[x (1− x)] (qνqµ`τ`ρ + qν`µ`τqρ + `ν`µqτqρ + `νqµqτ`ρ)

[`2 + q2x (1− x)]2

+

[
(1− x)2

]
qν`µqτ`ρ

[`2 + q2x (1− x)]2
+

[
x2 (1− x)2

]
qνqµqτqρ

[`2 + q2x (1− x)]2
(B.9)

by symmetry, we make use of

`µ`ν → 1

d
`2gµν (B.10)

`µ`ν`ρ`τ → 1

d (d+ 2)
`4 (gµνgρτ + gµρgντ + gµτgνρ) (B.11)

where this reduces to

=

∫
dd`

(2π)d

∫ 1

0

dx `4

d (d+ 2)

gµνgρτ + gµτgνρ + gµρgντ

[`2 + q2x (1− x)]2

+
`2

d

[x2] gντqµqρ + [x (1− x)] (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

[`2 + q2x (1− x)]2

+
`2

d

[
(1− x)2

]
gµρqνqτ

[`2 + q2x (1− x)]2
+

[
x2 (1− x)2

]
qνqµqτqρ

[`2 + q2x (1− x)]2
(B.12)

where we make use of the known integral (A.4 in [16]) with ∆2 = −q2x (1− x),∫
dd`

(2π)d
`2β

(`2 −∆2)α
= i (−1)α+β Γ

(
β + d

2

)
Γ
(
α− β − d

2

)
(4π)

d
2 Γ (α) Γ

(
d
2

) ∆
2
(

d
2
−α+β

)

(B.13)

=
i

(4π)
d
2 Γ (2) Γ

(
d
2

) ∫ 1

0

dx

∆d

d (d+ 2)
Γ

(
2 +

d

2

)
Γ

(
−d
2

)
(gµνgρτ + gµρgντ + gµτgνρ)

+
∆d−2

d
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
[x (1− x)]×

(qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+
∆d−2

d
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)[
x2
]
gντqµqρ

+
∆d−2

d
Γ

(
1 +

d

2

)
Γ

(
1− d

2

)[
(1− x)2

]
gµρqνqτ

+∆d−4Γ

(
d

2

)
Γ

(
2− d

2

)[
x2 (1− x)2

]
qνqµqτqρ (B.14)
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where we can simplify using Γ (1 + x) = xΓ (x)

=
iΓ
(
−d

2

)
(4π)

d
2

∫ 1

0

dx

∆d

d (d+ 2)

(
1 +

d

2

)(
d

2

)
(gµνgρτ + gµρgντ + gµτgνρ)

+
∆d−2

d

(
d

2

)(
−d
2

)
[x (1− x)]×

(qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+
∆d−2

d

(
d

2

)(
−d
2

)[
x2
]
gντqµqρ

+
∆d−2

d

(
d

2

)(
−d
2

)[
(1− x)2

]
gµρqνqτ

+∆d−4

(
1− d

2

)(
−d
2

)[
x2 (1− x)2

]
qνqµqτqρ (B.15)

which further reduces to

=
iΓ
(
−d

2

)
(4π)

d
2

∫ 1

0

dx

∆d

4
(gµνgρτ + gµρgντ + gµτgνρ)

− d∆d−2

4
[x (1− x)] (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

− d∆d−2

4

[
x2
]
gντqµqρ − d∆d−2

4

[
(1− x)2

]
gµρqνqτ

+
d (d− 2)∆d−4

4

[
x2 (1− x)2

]
qνqµqτqρ (B.16)

where substituting in ∆2 = −q2x (1− x), we see all polynomials are of order d as
expected with

=
iΓ
(
−d

2

)
4 (4π)

d
2

∫ 1

0

dx

qd [−x (1− x)]
d
2 (gµνgρτ + gµρgντ + gµτgνρ)

+ dqd−2 [−x (1− x)]
d
2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

− dqd−2
[
(−x)

d
2
+1 (1− x)

d
2
−1
]
gντqµqρ
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− dqd−2
[
(−x)

d
2
−1 (1− x)

d
2
+1
]
gµρqνqτ

+ d (d− 2) qd−4 [−x (1− x)]
d
2 qνqµqτqρ (B.17)

and evaluating the Feynman integrals using (A.3 in [16])∫ 1

0

dxxα−1 (1− x)β−1 =
Γ (α) Γ (β)

Γ (α + β)

we arrive at

=
i (−1)

d
2 Γ
(
−d

2

)
4 (4π)

d
2

[

qd
Γ
(
d
2
+ 1
)2

Γ (d+ 2)
(gµνgρτ + gµρgντ + gµτgνρ)

+ dqd−2Γ
(
d
2
+ 1
)2

Γ (d+ 2)
(qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+ dqd−2Γ
(
d
2

)
Γ
(
d
2
+ 2
)

Γ (d+ 2)
[gµρqνqτ + gντqµqρ]

+ d (d− 2) qd−4Γ
(
d
2
+ 1
)2

Γ (d+ 2)
qνqµqτqρ

]
(B.18)

where factoring out the Gamma functions allows us to conclude with

=
i (−1)

d
2 Γ
(
−d

2

)
4 (4π)

d
2

Γ
(
d
2
+ 1
)2

Γ (d+ 2)

[
qd (gµνgρτ + gµρgντ + gµτgνρ)

+ dqd−2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+ (d+ 2) qd−2 (gµρqνqτ + gντqµqρ)

+ d (d− 2) qd−4qνqµqτqρ
]

(B.19)

Notice that in the limit of d = 2 + 2ε with ε→ 0 we have

=
i (−1)1+ε Γ (−1− ε)

4 (4π)1+ε

Γ (1 + ε)2

Γ (4 + ε)

[
q2q2ε (gµνgρτ + gµρgντ + gµτgνρ)

+ 2 (1 + ε) q2ε (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )
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+ (4 + 2ε) q2ε (gµρqνqτ + gντqµqρ)

+ 4ε (1 + ε) q−2(1+ε)qνqµqτqρ
]

(B.20)

and with Γ (−1− ε) = 1
ε
− γ +1+O (ε), considering only divergent terms, we can

discard the last term

=

(
1

ε

)
−i

24 (4π)

[
q2 (gµνgρτ + gµρgντ + gµτgνρ)

+ 2 (qνqµgτρ + gµτqνqρ + gνµqτqρ + gνρqµqτ )

+ 4 (gµρqνqτ + gντqµqρ)

]
.



C
Scalar Field N -Loop 2-Vertex Calculation

Focusing on `n−1, we see that it’s dependence can be factored and evaluated with

∝
∫

d4`n−1

`νnn−1`
τn
n−1 (`n−1 − `n−2)

νn−1 (`n−1 − `n−2)
τn−1

`2n−1 (`n−1 − `n−2)
2 (C.1)

we notice this is exactly of the form of the 1-loop 2-vertex diagram already evaluated.
Proceeding identically, we begin with a Feynman integral in the denominator

=

∫
d4`n−1 dx

`νnn−1`
τn
n−1 (`n−1 − `n−2)

νn−1 (`n−1 − `n−2)
τn−1[

(1− x) `2n−1 + x (`n−1 − `n−2)
2]2 (C.2)

=

∫
d4`n−1 dx

`νnn−1`
τn
n−1 (`n−1 − `n−2)

νn−1 (`n−1 − `n−2)
τn−1[

`2n−1 + x
(
2`n−1 · `n−2 − `2n−2

)]2 (C.3)

=

∫
d4`n−1 dx

`νnn−1`
τn
n−1 (`n−1 − `n−2)

νn−1 (`n−1 − `n−2)
τn−1[

(`n−1 + x`n−2)
2 − x2`2n−2 + x`2n−2

]2 (C.4)

where translating `n−1 → `n−1 − x`n−2

=

∫
d4`n−1 dx (`n−1 − x`n−2)

νn (`n−1 − x`n−2)
τn (`n−1 − (1− x) `n−2)

νn−1 (`n−1 − (1− x) `n−2)
τn−1[

`2n−1 + x (1− x) `2n−2

]2
(C.5)
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and keeping only even powers of `n−2 (and representing symmetrization over indices
(µnτnµn−1τn−1) by ⊗),

=

∫
d4`n−1 dx

⊗
(
`νnn−1`

τn
n−1`

νn−1

n−1 `
τn−1

n−1

)
+ x2`νnn−2`

τn
n−2`

νn−1

n−1 `
τn−1

n−1 + x (1− x) `νnn−1`
τn
n−2`

νn−1

n−1 `
τn−1

n−2[
`2n−1 + x (1− x) `2n−2

]2
+
x (1− x) `νnn−2`

τn
n−1`

νn−1

n−2 `
τn−1

n−1 + (1− x)2 `νnn−1`
τn
n−1`

νn−1

n−2 `
τn−1

n−2 + x2 (1− x)2 `νnn−2`
τn
n−2`

νn−1

n−2 `
τn−1

n−2[
`2n−1 + x (1− x) `2n−2

]2
(C.6)

Symmetrizing the `n−1 factors as before yields

=

∫
d4`n−1 dx

24`4n−1

d(d+2)
⊗ (gνnτngνn−1τn−1) + x2

`2n−1

d
gµn−1νn−1`νnn−2`

τn
n−2 + x (1− x)

`2n−1

d
gνnνn−1`τnn−2`

τn−1

n−2[
`2n−1 + x (1− x) `2n−2

]2
+
x (1− x)

`2n−1

d
gτnνn−1`νnn−2`

τn−1

n−2 + (1− x)2
`2n−1

d
gνnτn`

νn−1

n−2 `
τn−1

n−2 + x2 (1− x)2 `νnn−2`
τn
n−2`

νn−1

n−2 `
τn−1

n−2[
`2n−1 + x (1− x) `2n−2

]2 .

(C.7)

Splitting the numerator up, we can once again apply the known integration expres-
sion with ∆2 = −x (1− x) `2n−2,∫

dd`

(2π)d
`2β

(`2 −∆2)α
= i (−1)α+β Γ

(
β + d

2

)
Γ
(
α− β − d

2

)
(4π)

d
2 Γ (α) Γ

(
d
2

) ∆
2
(

d
2
−α+β

)
, (C.8)

yielding

=
i

(4π)
d
2 Γ
(
d
2

) ∫ 1

0

dx 24

d (d+ 2)
⊗ (gνnτngνn−1τn−1) Γ

(
2 +

d

2

)
Γ

(
−d
2

)
∆d

+
x2

d
gµn−1νn−1`νnn−2`

τn
n−2Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
∆d−2

+
x (1− x)

d
gνnνn−1`τnn−2`

τn−1

n−2 Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
∆d−2

+
x (1− x)

d
gτnνn−1`νnn−2`

τn−1

n−2 Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
∆d−2
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+
(1− x)2

d
gνnτn`

νn−1

n−2 `
τn−1

n−2 Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
∆d−2

+ x2 (1− x)2 `νnn−2`
τn
n−2`

νn−1

n−2 `
τn−1

n−2 Γ

(
d

2

)
Γ

(
2− d

2

)
∆d−4 (C.9)

and substituting in ∆, we see that each term has `d dependence (upon symmetriza-
tion).

=
i

(4π)
d
2 Γ
(
d
2

) ∫ 1

0

dx 24

d (d+ 2)
⊗ (gνnτngνn−1τn−1) Γ

(
2 +

d

2

)
Γ

(
−d
2

)
(x (1− x))

d
2 `dn−2

+
1

d
gµn−1νn−1`νnn−2`

τn
n−2Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
x

d
2
+1 (1− x)

d
2
−1 `d−2

n−2

+
1

d
gνnνn−1`τnn−2`

τn−1

n−2 Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
(x (1− x))

d
2 `d−2

n−2

+
1

d
gτnνn−1Γ

(
1 +

d

2

)
Γ

(
1− d

2

)
(x (1− x))

d
2 `νnn−2`

τn−1

n−2 `
d−2
n−2

+
1

d
gνnτnΓ

(
1 +

d

2

)
Γ

(
1− d

2

)
x

d
2
−1 (1− x)

d
2
+1 `

νn−1

n−2 `
τn−1

n−2 `
d−2
n−2

+ Γ

(
d

2

)
Γ

(
2− d

2

)
(x (1− x))

d
2 `νnn−2`

τn
n−2`

νn−1

n−2 `
τn−1

n−2 `
d−4
n−2 (C.10)

where we exploit Γ (1 + x) = xΓ (x) to factor and cancel the gamma functions such
that

=
iΓ
(
−d

2

)
(4π)

d
2

∫ 1

0

dx
24
(
1 + d

2

)
d
2

d (d+ 2)
⊗ (gνnτngνn−1τn−1) (x (1− x))

d
2 `dn−2

+

(
d
2

) (
−d

2

)
d

gµn−1νn−1`νnn−2`
τn
n−2x

d
2
+1 (1− x)

d
2
−1 `d−2

n−2

+
d
2

(
−d

2

)
d

gνnνn−1 (x (1− x))
d
2 `τnn−2`

τn−1

n−2 `
d−2
n−2

+
d
2

(
−d

2

)
d

gτnνn−1 (x (1− x))
d
2 `νnn−2`

τn−1

n−2 `
d−2
n−2

+
d
2

(
−d

2

)
d

gνnτnx
d
2
−1 (1− x)

d
2
+1 `

νn−1

n−2 `
τn−1

n−2 `
d−2
n−2

+

(
1− d

2

)(
−d
2

)
(x (1− x))

d
2 `νnn−2`

τn
n−2`

νn−1

n−2 `
τn−1

n−2 `
d−4
n−2 (C.11)

Evaluating the Feynman integrals,

=
iΓ
(
−d

2

)
(4π)

d
2 Γ (d+ 2)

24
(
1 + d

2

)
d
2

d (d+ 2)
⊗ (gνnτngνn−1τn−1) Γ

(
d

2
+ 1

)2

`dn−2
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+

(
d
2

) (
−d

2

)
d

gµn−1νn−1`νnn−2`
τn
n−2Γ

(
d

2
+ 2

)
Γ

(
d

2

)
`d−2
n−2

+
d
2

(
−d

2

)
d

gνnνn−1Γ

(
d

2
+ 1

)2

`τnn−2`
τn−1

n−2 `
d−2
n−2

+
d
2

(
−d

2

)
d

gτnνn−1Γ

(
d

2
+ 1

)2

`νnn−2`
τn−1

n−2 `
d−2
n−2

+
d
2

(
−d

2

)
d

gνnτnΓ

(
d

2
+ 2

)
Γ

(
d

2

)
`
νn−1

n−2 `
τn−1

n−2 `
d−2
n−2

+

(
1− d

2

)(
−d
2

)
Γ

(
d

2
+ 1

)2

`νnn−2`
τn
n−2`

νn−1

n−2 `
τn−1

n−2 `
d−4
n−2. (C.12)



D
Propagator Derivations

For QED, the momentum space photon propagator is given by

Dνρ =
−i
k2

(
gµν +

(
1− ξ

kµkν

k2

))
.

This implies that it is the inverse of the quadratic term in the QED Lagrangian,

L = Aµ

(
−k2gµν +

(
1− 1

ξ

)
∂µ∂ν

)
︸ ︷︷ ︸

quadratic term

Aν . (D.1)

Namely, we have (
−k2gµν +

(
1− 1

ξ

)
∂µ∂ν

)
Dνρ = iδρµ. (D.2)

Proof.(
−k2gµν +

(
1− 1

ξ

)
kµkν

)
−i
k2

(
gµν + (1− ξ)

kµkν

k2

)
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= − i

k2

(
−k2δρµ − (1− ξ) k2gµν

kνkρ

k2
+

(
1− 1

ξ

)
kµkνg

νρ +

(
1− 1

ξ

)
(1− ξ)

kµkνk
νkρ

k2

)
= − i

k2

(
−k2δρµ − (1− ξ) kµk

ρ +

(
1− 1

ξ

)
kµk

ρ +

(
1− 1

ξ

)
(1− ξ) kµk

ρ

)
= − i

k2

(
−k2δρµ + ξkµk

ρ − 1

ξ
kµk

ρ +

(
1− ξ − 1

ξ
+ 1

)
kµk

ρ

)
= − i

k2
(
−k2δρµ + 2kµk

ρ
)

= − i

k2
(
−k2δρµ

)
= iδρµ,

as desired.

For ModMax, as the term quadratic in the quantum fields is entirely analogous up
to a cosh γ factor and a background dependent term that can be absorbed through
gauge choice

LModMax =
cosh γ

2
aν

(
−k2gµν +

(
1− 1

ξ
− tanh γSC

)
kµkν

)
aµ non-quadratic terms,

(D.3)

the propagator is identical, with the addition of division by the cosh γ factor with

Dνρ =
1

cosh γ
−i
k2

(
gµν +

(
1−

(
ξ +

1

SC tanh γ

)
kµkν

k2

))
, (D.4)

where throughout my thesis I have chosen ξ such that the propagator simplifies to

Dνρ =
1

cosh γ
−igµν

k2
. (D.5)
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